The European Physical Journal Special Topics

, Volume 222, Issue 10, pp 2429–2439 | Cite as

Dynamics of three Toda oscillators with nonlinear unidirectional coupling

  • A. Dvorak
  • P. Kuzma
  • P. Perlikowski
  • V. Astakhov
  • T. Kapitaniak
Regular Article Nonlinear Dynamics and Synchronization

Abstract

We study the dynamics of three unidirectionally coupled Toda oscillators with nonlinear coupling function in the form of first three terms of Taylor power series. We analytically investigate how the coupling influence the stability of steady state. Basing on calculation of the first Lyapunov coefficient, we show that destabilization may occur by the sub- or supercritical Andronov-Hopf bifurcation. Born periodic solutions are calculated using path-following as a function of coupling strength and Taylor series coefficients. We present that initially stable or unstable branch of periodic solutions may undergo a sequence of bifurcations including: period doubling, Neimark-Saker and fold.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer, Berlin, 1984)Google Scholar
  2. 2.
    A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization. A Universal Concept in Nonlinear Sciences (Cambridge University Press, 2001)Google Scholar
  3. 3.
    S.H. Strogatz, Nature 410, 268 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    M. San Miguel, J. Johnson, J. Kertesz, et al., Eur. Phys. J. Special Topics 214, 245 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    S. Havlin, D. Kenett, E. Ben-Jacob, et al., Eur. Phys. J. Special Topics 214, 273 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    A. Arenas, A. Diaz-Guilera, J. Kurths, et al., Phys. Rep. 469, 93 (2008)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    S. Boccaletti, V. Latora, Y. Moreno, et al., Phys. Rep. 424, 175 (2006)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    J. Farmer, M. Gallegati, C. Hommes, et al., Eur. Phys. J. Special Topics 214, 295 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    B.K. Goswami, Int. J. Bifurcat Chaos 5, 303 (1995)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    V. Chizhevsky, J. Opt. B-Quantum S. O. 2, 711 (2000)CrossRefGoogle Scholar
  11. 11.
    B.K. Goswami, A.N. Pisarchik, Int. J. Bifurcat Chaos 18, 1645 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    S. Cialdi, F. Castelli, F. Prati, Opt. Commun. 287, 176 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    M. Basso, R. Genesio, A. Tesi, in Decision and Control, 1998. Proceedings of the 37th IEEE Conference on, Vol. 2 (1998), p. 1936Google Scholar
  14. 14.
    B.K. Goswami, Phy. Lett. A 245, 97 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    B.K. Goswami, Pramana 77, 987 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    V.A. Makarov, W. Ebeling, M.G. Velarde, Int. J. Bifurcat Chaos 10, 1075 (2000)MathSciNetMATHGoogle Scholar
  17. 17.
    W. Ebeling, P.S. Landa, V.G. Ushakov, Phys. Rev. E 63, 046601 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    W. Ebeling, U. Erdmann, J. Dunkel, et al., J. Stat. Phys. 101, 443 (2000)ADSCrossRefMATHGoogle Scholar
  19. 19.
    S. Watanabe, S.H. Strogatz, Phys. Rev. Lett. 70, 2391 (1993)MathSciNetADSCrossRefMATHGoogle Scholar
  20. 20.
    Y. Kuramoto, Int. J. Bifurcat Chaos 7, 789 (1997)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    M.K.S. Yeung, S.H. Strogatz, Phys. Rev. Lett. 82, 648 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    M. Rosenblum, A. Pikovsky, Phys. Rev. Lett. 92, 114102 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    P. Ashwin, O. Burylko, Y. Maistrenko, et al., Phys. Rev. Lett. 96, 054102 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    O. Omel’chenko, C. Hauptmann, Y. Maistrenko, et al., Physica D 237, 365 (2008)MathSciNetADSCrossRefMATHGoogle Scholar
  25. 25.
    L. Lücken, S. Yanchuk, Physica D 241, 350 (2012)ADSCrossRefMATHGoogle Scholar
  26. 26.
    V.V. Astakhov, V.S. Anishchenko, A.V. Shabunin, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl 42, 352 (1995)CrossRefGoogle Scholar
  27. 27.
    A. Hohl, A. Gavrielides, T. Erneux, et al., Phys. Rev. Lett. 78, 4745 (1997)ADSCrossRefGoogle Scholar
  28. 28.
    V.N. Belykh, I.V. Belykh, K.V. Nelvidin, Math. Comput. Simulation 58, 477 (2002)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    W. Lu, T. Chen, G. Chen, Physica D 221, 118 (2006)MathSciNetADSCrossRefMATHGoogle Scholar
  30. 30.
    P. Perlikowski, B. Jagiello, A. Stefanski, et al., Phys. Rev. E 78, 017203 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    V. Anishchenko, S. Nikolaev, J. Kurths, Chaos 18, 037123 (2008)MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    V. Anishchenko, S. Astakhov, T. Vadivasova, Europhys. Lett. 86, 30003 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    J. Simonovi, Differ. Equ. Dyn. Syst. 21, 141 (2013)CrossRefGoogle Scholar
  34. 34.
    A. Argyris, D. Syvridis, L. Larger, et al., Nature 438, 343 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Horikawa, H. Kitajima, Physica D 238, 216 (2009)MathSciNetADSCrossRefMATHGoogle Scholar
  36. 36.
    Y. Horikawa, J. Theor. Biol. 289, 151 (2011)MathSciNetCrossRefGoogle Scholar
  37. 37.
    E. Padmanaban, R. Banerjee, S.K. Dana, Int. J. Bifurcat Chaos 22, 1250177 (2012)MathSciNetCrossRefGoogle Scholar
  38. 38.
    S. Rajasekar, J. Used, A. Wagemakers, et al., Commun. Nonlinear Sci. 17, 3435 (2012)CrossRefMATHGoogle Scholar
  39. 39.
    M. Ciszak, S. Euzzor, A. Geltrude, et al., Commun. Nonlinear Sci. 18, 938 (2013)MathSciNetCrossRefGoogle Scholar
  40. 40.
    M.A. Matías, J. Güémez, Phys. Rev. Lett. 81, 4124 (1998)ADSCrossRefGoogle Scholar
  41. 41.
    X.L. Deng, H.B. Huang, Phys. Rev. E 65, 055202 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    S. Yanchuk, M. Wolfrum, Phys. Rev. E 77, 026212 (2008)MathSciNetADSCrossRefGoogle Scholar
  43. 43.
    P. Perlikowski, S. Yanchuk, O.V. Popovych, et al., Phys. Rev. E 82, 036208 (2010)MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    S. Yanchuk, P. Perlikowski, O.V. Popovych, et al., Chaos 21, 047511 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    O.V. Popovych, S. Yanchuk, P.A. Tass, Phys. Rev. Lett. 107, 228102 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    P. Perlikowski, S. Yanchuk, M. Wolfrum, et al., Chaos 20, 013111 (2010)MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    P. Perlikowski, S. Yanchuk, M. Wolfrum, et al., in IUTAM Symposium on Nonlinear Dynamics for Advanced Technologies and Engineering Design (Springer, 2013), p. 63Google Scholar
  48. 48.
    Y. Kuznetsov, Elements of Applied Bifurcation Theory, Vol. 112, Applied Mathematical Sciences (Springer-Verlag, 1995)Google Scholar
  49. 49.
    E.J. Doedel, AUTO-07P: Continuation and bifurcation software for ordinary differential equations (Montreal, Canada, 2006)Google Scholar
  50. 50.
    B. Ermentrout, Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students, Vol. 14 (Society for Industrial and Applied Mathematics, 1987)Google Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • A. Dvorak
    • 1
  • P. Kuzma
    • 2
  • P. Perlikowski
    • 2
  • V. Astakhov
    • 1
  • T. Kapitaniak
    • 2
  1. 1.Radiotechnical Department, Saratov State Technical UniversitySaratovRussia
  2. 2.Division of Dynamics, Lodz University of TechnologyLodzPoland

Personalised recommendations