The European Physical Journal Special Topics

, Volume 222, Issue 9, pp 2329–2333 | Cite as

The 41Σ+ electronic state of LiCs molecule

  • Jacek SzczepkowskiEmail author
  • Patryk Jasik
  • Anna Grochola
  • Włodzimierz Jastrzȩbski
  • Józef E. Sienkiewicz
  • Paweł Kowalczyk
Regular Article


The 41Σ+ state of LiCs molecule is observed experimentally for the first time. The inverted perturbation approach (IPA) method is used to derive the potential energy curve of the state from the measured spectra. The experiment is accompanied by theoretical calculations of adiabatic potentials for excited states in LiCs including 41Σ+, performed with the MOLPRO program package. The irregular shape of the 41Σ+ state potential predicted by theory is confirmed in the experiment.


European Physical Journal Special Topic Potential Energy Curve Adiabatic Potential Ground State Level Lower Vibrational Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. von Neumann, E. Wigner, Phys. Z. 30, 467 (1929)zbMATHGoogle Scholar
  2. 2.
    K.M. Jones, E. Tiesinga, P.D. Lett, P.S. Julienne, Rev. Mod. Phys. 78, 483 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    P. Jasik, J.E. Sienkiewicz, Chem. Phys. 323, 563 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    P. Łobacz, P. Jasik, J.E. Sienkiewicz, Cent. Eur. J. Phys. (in print)  doi: 10.2478/s11534-012-0137-5
  5. 5.
    MOLPRO, version 2006.1, a package of ab initio programs, H.-J. Werner, P.J. Knowles, et al., see []
  6. 6.
    L. Von Szentpaly, P. Fuentealba, H. Preuss, H. Stoll, Chem. Phys. Lett. 93, 555 (1982)ADSCrossRefGoogle Scholar
  7. 7.
    I.S. Lim, P. Schwerdtfeger, B. Metz, H. Stoll, J. Chem. Phys. 122, 104103 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    P. Fuentealba, H. Preuss, H. Stoll, L. Von Szentply, Chem. Phys. Lett. 89, 418 (1982)ADSCrossRefGoogle Scholar
  9. 9.
    D. Feller (unpublished)Google Scholar
  10. 10.
    W. Jastrzȩbski, P. Kowalczyk, Phys. Rev. A 51, 1046 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    J. Szczepkowski, A. Grochola, W. Jastrzebski, P. Kowalczyk, J. Mol. Spectrosc. 276-277, 19 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    A. Grochola, J. Szczepkowski, W. Jastrzebski, P. Kowalczyk, J. Chem. Phys. 135, 044318 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    P. Staanum, A. Pashov, H. Knöckel, E. Tiemann, Phys. Rev. A 75, 042513 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    A. Pashov, W. Jastrzebski, P. Kowalczyk, Comput. Phys. Commun. 128, 622 (2000)ADSCrossRefzbMATHGoogle Scholar
  15. 15.
    A. Grochola, P. Kowalczyk, W. Jastrzebski, A. Pashov, J. Chem. Phys. 121, 5754 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    J.K.G. Watson, J. Mol. Spectrosc. 219, 326 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    R. Dardouri, K. Issa, B. Oujia, F.X. Gadéa, Int. J. Quantum Chem. 112, 2724 (2012)CrossRefGoogle Scholar
  18. 18.
    N. Mabrouk, H. Berriche, H. Ben Ouada, F.X. Gadea, J. Phys. Chem. A 114, 6657 (2010)CrossRefGoogle Scholar
  19. 19.
    M. Korek, A.R. Allouche, K. Fakhreddine, A. Chaalan, Can. J. Phys. 78, 977 (2000)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • Jacek Szczepkowski
    • 1
    Email author
  • Patryk Jasik
    • 2
  • Anna Grochola
    • 3
  • Włodzimierz Jastrzȩbski
    • 1
  • Józef E. Sienkiewicz
    • 2
  • Paweł Kowalczyk
    • 3
  1. 1.Institute of PhysicsPolish Academy of SciencesWarszawaPoland
  2. 2.Department of Theoretical Physics and Quantum Information, Faculty of Applied Physics and MathematicsGdańsk University of TechnologyGdańskPoland
  3. 3.Institute of Experimental Physics, Department of PhysicsUniversity of WarsawWarszawaPoland

Personalised recommendations