The European Physical Journal Special Topics

, Volume 222, Issue 8, pp 1827–1846 | Cite as

Fractional calculus: A survey of useful formulas

  • D. ValérioEmail author
  • J. J. Trujillo
  • M. Rivero
  • J. A. T. Machado
  • D. Baleanu


This paper presents a survey of useful, established formulas in Fractional Calculus, systematically collected for reference purposes.


European Physical Journal Special Topic Fractional Derivative Fractional Calculus Continue Fraction Expansion Liouville Integral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional integrals and derivatives: theory and applications (Gordon and Breach Science Publishers, Amsterdam, 1993)Google Scholar
  2. 2.
    B. Riemann, Gesammelte Mathematische Werke und Wissenschaftlicher, Leipzig. Teubner (Dover, New York, 1953), p. 331Google Scholar
  3. 3.
    G.H. Hardy, J. London Math. Soc. 20, 45 (1945)Google Scholar
  4. 4.
    J.J. Trujillo, M. Rivero, B. Bonilla, J. Math. Anal. Appl. 231, 255 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Z.M. Odibat, N.T. Shawagfeh, Appl. Math. Comput. 186, 286 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    M.M. Dzherbashyan, A.B. Nersesian, Izvestiya Akad. Nauk Armyanskoi SSR. Seriya Fiz.-Matemat. Nauk 11, 85 (1958)Google Scholar
  7. 7.
    M.M. Dzherbashyan, A.B. Nersesian, Doklady Akad. Nauk (Proc. Russian Acad. Sci.) 121, 210 (1958)Google Scholar
  8. 8.
    K.S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations (John Wiley and Sons, New York, 1993)Google Scholar
  9. 9.
    I. Podlubny, Fractional differential equations (Academic Press, San Diego, 1998)Google Scholar
  10. 10.
    A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations, Vol. 204 (North-Holland Mathematics Studies, Elsevier, Amsterdam, 2006)Google Scholar
  11. 11.
    F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models (World Scientific, Singapore, 2010)Google Scholar
  12. 12.
    J.A. Tenreiro Machado, A.M. Galhano, J.K. Tar Anabela, M. Oliveira, Comm. Nonlinear Sci. Numer. Simul. 14, 3723 (2009)CrossRefzbMATHADSGoogle Scholar
  13. 13.
    M.A. Al-Alaoui, Electr. Lett. 29, 376 (1993)CrossRefGoogle Scholar
  14. 14.
    D. Valério, J.S. da Costa, An Introduction to Fractional Control (IET, Stevenage, 2013)Google Scholar
  15. 15.
    C.A. Monje, Y. Chen, B. Vinagre, D. Xue, V. Feliu, Fractional-order Systems and Controls:Fundamentals and Applications (Springer, New York, 2010)Google Scholar
  16. 16.
    R. Caponetto, G. Dongola, L. Fortuna, I. Petras, Fractional-order Systems: Modeling and Control Applications (World Scientific Company, Singapore, 2010)Google Scholar
  17. 17.
    V.E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media (Springer, New York, 2011)Google Scholar
  18. 18.
    J.A. Tenreiro Machado, V. Kiryakova, F. Mainardi, Comm. Nonlinear Sci. Numer. Simul. 16, 1140 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    M. Riesz, Bull. Soc. Math. France 67, 153 (1939)MathSciNetGoogle Scholar
  20. 20.
    M. Riesz, Acta Math. 81, 1 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    F. Ben Adda, Comptes Rendus Acad. Sci. - Series I: Math. 326, 787 (1998)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Q.A. Naqvi, M. Abbas, Optics Comm. 241, 349 (2004)CrossRefADSGoogle Scholar
  23. 23.
    J. Mortensen, M.M. Meerschaert, S.W. Wheatcraft, Physica A: Stat. Mech. Appl. 367, 181 (2006)CrossRefADSGoogle Scholar
  24. 24.
    V.E. Tarasov, Annals Phys. 323, 2756 (2008)MathSciNetCrossRefzbMATHADSGoogle Scholar
  25. 25.
    D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus Models and Numerical Methods (Series on Complexity, Nonlinearity and Chaos) (World Scientific, Singapore, 2012)Google Scholar
  26. 26.
    V.S. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Research Notes in Mathematics, Vol. 301 (Longman Sci. Tech. & J. Wiley, Harlow, 1994)Google Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • D. Valério
    • 1
    Email author
  • J. J. Trujillo
    • 2
  • M. Rivero
    • 3
  • J. A. T. Machado
    • 4
  • D. Baleanu
    • 5
    • 6
    • 7
  1. 1.IDMEC / LAETA, Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal
  2. 2.Departamento de Análisis MatemáticoUniversity of La LagunaTenerifeSpain
  3. 3.Departamento de Matemática FundamentalUniversity of La LagunaTenerifeSpain
  4. 4.Dept. of Electrical EngineeringInstitute of Engineering of Polytechnic of PortoPortoPortugal
  5. 5.Department of Mathematics and Computer SciencesÇankaya UniversityAnkaraTurkey
  6. 6.Institute of Space SciencesMagurele-BucharestRomania
  7. 7.Department of MathematicsKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations