Advertisement

The European Physical Journal Special Topics

, Volume 222, Issue 7, pp 1617–1636 | Cite as

Multi-scale energy exchanges between a nonlinear oscillator of Bouc-Wen type and another coupled nonlinear system

Regular Article

Abstract

The concept of energy exchange between coupled oscillators can be endowed for wide variety of applications such as control and energy harvesting. It has been proved that by coupling an essential nonlinear oscillator (cubic nonlinearity) to a main system (mostly linear), the latter system can be controlled in a one way and almost irreversible manner. The phenomenon is called energy pumping and the coupled nonlinear system is named as nonlinear energy sink (NES). The process of energy transfer from the main system to the nonlinear smooth or non-smooth attachment at different scales of time can present several scenarios: It can be attracted to periodic behaviors which present low or high energy levels for the main system and/or to quasi-periodic responses of two oscillators by persistent bifurcations between their stable zones. In this paper we analyze multi-scale dynamics of two attached oscillators: a Bouc-Wen type in general (in particular: a Dahl type and a modified hysteresis system) and a NES (nonsmooth and cubic). The system behavior at fast and first slow times scales by detecting its invariant manifold, its fixed points and singularities will be analyzed. Analytical developments will be accompanied by some numerical examples for systems that present quasi-periodic responses.

The endowed Bouc-Wen models correspond to the hysteretic behavior of materials or structures. This paper is clearly connected with the dynamics of systems with hysteresis and nonlinear dynamics based energy harvesting.

Keywords

Phase Portrait European Physical Journal Special Topic Invariant Manifold Energy Harvest Main System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.F. Vakakis, O.V. Gendelman, L.A. Bergman, D.M. McFarland, G. Kerschen, Y.S. Lee, Nonlinear Trageted Energy Transfer in Mechanical and Structural Systems I (Springer, 2009), p. 375Google Scholar
  2. 2.
    A.F. Vakakis, O.V. Gendelman, L.A. Bergman, D.M. McFarland, G. Kerschen, Y.S. Lee, Nonlinear Trageted Energy Transfer in Mechanical and Structural Systems II (Springer, 2009), p. 655Google Scholar
  3. 3.
    R. Bellet, B. Cochelin, P. Herzog, P.-O. Mattei, J. Sound Vibr. 329, 2768 (2010)CrossRefADSGoogle Scholar
  4. 4.
    R. Bellet, B. Cochelin, R. Côte, P.-O. Mattei, J. Sound Vibr. 331, 5657 (2012)CrossRefADSGoogle Scholar
  5. 5.
    F. Nucera, A.F. Vakakis, D.M. McFarland, L.A. Bergman, G. Kerschen, Nonlinear Dyn. 50, 651 (2007)CrossRefMATHGoogle Scholar
  6. 6.
    Y.S. Lee, F. Nucera, A.F. Vakakis, D.M. McFarland, L.A. Bergman, Physica D 238, 1868 (2009)CrossRefMATHADSGoogle Scholar
  7. 7.
    O.V. Gendelman, J. Sound Vibr. 315, 732 (2008)CrossRefADSGoogle Scholar
  8. 8.
    F. Schmidt, C.-H. Lamarque, Int. J. Non-Linear Mech. 45, 866 (2010)CrossRefADSGoogle Scholar
  9. 9.
    C.-H. Lamarque, O.V. Gendelman, A. Ture Savadkoohi, E. Etcheverria, Acta Mech. 221, 175 (2011)CrossRefMATHGoogle Scholar
  10. 10.
    C.-H. Lamarque, A. Ture Savadkoohi, E. Etcheverria, Z. Dimitrijevic, Int. J. Bifurcation Chaos 22, 1250295 (2012)CrossRefMathSciNetGoogle Scholar
  11. 11.
    A. Ture Savadkoohi, C.-H. Lamarque, Z. Dimitrijevic, Nonlinear Dyn. 70, 1473 (2012)CrossRefMathSciNetGoogle Scholar
  12. 12.
    O.V. Gendelman, J. Sound Vibr. 331, 4599 (2012)CrossRefADSGoogle Scholar
  13. 13.
    F. Ikhouane, J. Rodellar, Systems with Hysteresis (Wiley, 2007), p. 202Google Scholar
  14. 14.
    J. Awrejcewicz, L. Dzyubak, C.-H. Lamarque, Comm. Nonlinear Sci. Numerical Simul. 13, 939 (2008)CrossRefMATHMathSciNetADSGoogle Scholar
  15. 15.
    L.I. Manevitch, Nonlinear Dyn. 25, 95 (2001)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    A.H. Nayfeh, D.T. Mook, Nonlinear oscillations (John Wiley & Sons, 1979), p. 720Google Scholar
  17. 17.
    Y. Starosvetsky, O.V. Gendelman, J. Sound Vibr. 237, 1719 (2008)MATHMathSciNetGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Université de Lyon, École Nationale des Travaux Publics de l’État, LGCB and LTDS UMR CNRS 5513, Rue Maurice AudinVaulx-en-Velin CedexFrance
  2. 2.Université de Lyon, École Nationale des Travaux Publics de l’État, LGCB, rue Maurice AudinVaulx-en-Velin CedexFrance

Personalised recommendations