Advertisement

The European Physical Journal Special Topics

, Volume 222, Issue 7, pp 1607–1616 | Cite as

Energy harvesting in the nonlinear two-masses piezoelastic system driven by harmonic excitations

Regular Article

Abstract

We examine the energy harvesting system consisted of two different masses (magnets) attached to piezoelastic oscillators, coupled by the electric circuit, and driven by harmonic excitations. The nonlinearity of the system is achieved by variable distance between vibrating magnetic masses and the magnets attached directly to the harvester. We also introduce the mistuning parameter which describes the disproportion of vibrating masses (their ratio). In our work we examine the dependence of output power (in terms of mean squared voltage) generated on electric load on excitation frequencies for different values of mistuning parameter and additionally for different values of system nonlinearity parameter. We compare obtained results with the dia- grams presenting relative displacements of these oscillators (in terms of standard deviation) vs. excitation frequencies. In the second part of this paper we present the phase boundary lines (phase portraits) for selected values of applied frequency to show the complicated behavior of the oscillators in the nonlinear regime when the mistuning appears.

Keywords

Phase Portrait European Physical Journal Special Topic Relative Displacement Excitation Frequency Energy Harvesting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.M. Shahruz, J. Sound Vib. 292, 987 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    A. Erturk, J.M. Renno, D.J. Inman, J. Intell. Mater. Syst. Struct. 20, 529 (2009)CrossRefGoogle Scholar
  3. 3.
    M. Ferrari, V. Ferrari, M. Guizzetti, D. Marioli, A. Taroni, Sens. Actuators A 142, 329 (2008)CrossRefGoogle Scholar
  4. 4.
    I.-H. Kim, H.-J. Jung, B.M. Lee, S.-J. Jang, Appl. Phys. Lett. 98, 214102 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    G. Litak, M.I. Friswell, C.A. Kitio Kwuimy, S. Adhikari, M. Borowiec, Theoretical Appl. Mech. Lett. 2, 043009 (2012)CrossRefGoogle Scholar
  6. 6.
    G. Litak, M. Borowiec, M.I. Friswell, S. Adhikari, J. Theoret. Appl. Mech. 49, 757 (2011)Google Scholar
  7. 7.
    M. Lallart, S. Pruvost, D. Guyomar, Phys. Lett. A 375, 3921 (2011)ADSCrossRefMATHGoogle Scholar
  8. 8.
    A. Erturk, J. Hoffmann, D.J. Inman, Appl. Phys. Lett. 94, 254102 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    S.C. Stanton, C.C. McGehee, B.P. Mann, Physica D 239, 640 (2010)ADSCrossRefMATHGoogle Scholar
  10. 10.
    S.J. Jang, E. Rustighi, M.J. Brennan, Y.P. Lee, H.J. Jung, J. Intell. Mater. Syst. Struct. 22, 443 (2011)CrossRefGoogle Scholar
  11. 11.
    H. Vocca, I. Neri, F. Travasso, L. Gammaitoni, Appl. Energy 97, 771 (2012)CrossRefGoogle Scholar
  12. 12.
    Yen Kheng Tan (ed.), Sustainable Energy Harvesting Technologies - Past, Present and Future (InTech, Rijeka, Croatia, 2011), p. 169Google Scholar
  13. 13.
    F. Cottone, H. Vocca, L. Gammaitoni, Phys. Rev. Lett. 102, 080601 (2009)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Institute of Physics, Rzeszów UniversityRzeszówPoland

Personalised recommendations