The European Physical Journal Special Topics

, Volume 222, Issue 7, pp 1597–1605 | Cite as

An autoparametric energy harvester

  • K. Kecik
  • M. Borowiec
Regular Article

Abstract

This paper presents a numerical study of an autoparametric system composed of two elements: a pendulum and an excited nonlinear oscillator. Owing to an inertial coupling between the two elements, different types of motion are possible, from periodic to chaotic. This study examines a linear induction of an energy harvester depending on the pendulum motion. The harvester consists of a cylindrical permanent magnet mounted on a rotor and of four windings fixed to the housing as a stator. When the pendulum is rotating or swinging, the converter is generating energy due to magnetic induction. In this paper, a method utilizing parametrical resonance for harvesting energy from low frequency vibrations is studied. The authors compare energy induced by different types of pendulum motion: swinging, rotation and chaotic dynamics. Additionally, voltage values for different parameters of excitation are estimated.

Keywords

European Physical Journal Special Topic Bifurcation Diagram Energy Harvesting Chaotic Motion Linear Oscillator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.P. Mann, N.D. Sims, J. Sound Vibr. 319, 515 (2012)CrossRefADSGoogle Scholar
  2. 2.
    G. Litak, M. Borowiec, M.I. Friswell, S. Adhikari, J. Theoretical Appl. Mech. 49, 757 (2011)Google Scholar
  3. 3.
    M. Borowiec, G. Litak, M.I. Friswell, S.F. Ali, S. Adhikari, A.W. Lees, O. Bilgen, Int. J. Struct. Stabil. Dyn. 13, 1340006 (2013)CrossRefGoogle Scholar
  4. 4.
    C.R. McInnes, D.G. Gorman, M.P. Cartmell, J. Sound Vibr. 318, 655 (2008)CrossRefADSGoogle Scholar
  5. 5.
    Y.-J. Wang, Ch.-D. Chen, Ch.-K. Sung, Sensors Actuators A 159, 196 (2010)CrossRefGoogle Scholar
  6. 6.
    M. Li, Y. Wen, P. Li, J. Yang, X. Dai, Sensors Actuators A 166, 102 (2011)CrossRefGoogle Scholar
  7. 7.
    R.B. Malla, B. Shrestha, A. Bagtzoglou, J. Drasdis, P. Johnson, Renewable Energy 36, 1568 (2011)CrossRefGoogle Scholar
  8. 8.
    T.-W. Ma, H. Zhang, N.-S Xu, Mech. Syst. Signal Proc. 28, 323 (2012)CrossRefADSGoogle Scholar
  9. 9.
    J. Warminski, K. Kecik, J. Sound Vibr. 332, 612 (2009)CrossRefADSGoogle Scholar
  10. 10.
    J. Warminski, K. Kecik, Nonlinear Dynamics Phenomena in Mechanics, SMIA 181 (Springer-Verlag, Berlin Heidelberg, 2012), p. 1Google Scholar
  11. 11.
    K. Kecik, J. Warminski, Modeling, Simulation and Control of Nonlinear Engineering Dynamical Systems (Springer, 2009), p. 267Google Scholar
  12. 12.
    K. Kecik, J. Warminski, Procedia IUTAM 5, 249 (2012)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • K. Kecik
    • 1
  • M. Borowiec
    • 1
  1. 1.Department of Applied MechanicsLublin University of TechnologyLublinPoland

Personalised recommendations