Dynamic isolation systems using tunable nonlinear stiffness beams

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


Vibration isolation devices are required to reduce the forcing into the supporting structure or to protect sensitive equipment from base excitation. A suspension system with a low natural frequency is required to improve isolation, but with linear supports the minimum stiffness is bounded by the static stiffness required to support the equipment. However, nonlinear high-static-low-dynamic-stiffness (HSLDS) mounts may be designed, for example by combining elastic springs in particular geometries, to give the required nonlinear force-displacement characteristics. Current approaches to realise the required nonlinear characteristics are often inconvenient. Furthermore, the weight of the supported equipment, the environment, or the structural stiffness may change. This paper investigates the design of HSLDS isolation mounts using beams of tunable geometric nonlinear stiffness. In order to obtain the nonlinear response required, we first study the case of generic beams subject to static loads that are able to tune their nonlinear force-displacement characteristics to ensure that the isolators have very low dynamic stiffness. Tuning is achieved by actuators at the ends of the beams that prescribe the axial displacement and rotation. Secondly, we study a composite beam with an initial thermal pre-stress, resulting in internal stresses that give the required nonlinear response.

This is a preview of subscription content, log in to check access.


  1. 1.

    M.I. Friswell, J.E.T. Penny, S.D. Garvey, A.W. Lees, Dynamics of Rotating Machines (Cambridge University Press, 2010)

  2. 2.

    G. Genta, Vibration of Structures and Machines: Practical Aspects (Springer-Verlag, 1995)

  3. 3.

    D.J. Inman, Engineering Vibrations, 3rd edn. (Pearson, 2008)

  4. 4.

    E.I. Rivin, Passive Vibration Isolation (Wiley-Blackwell, 2003)

  5. 5.

    L. Lacoste, Physics 5, 178 (1934)

    ADS  Article  Google Scholar 

  6. 6.

    M.S. Whorton, g-limit: A microgravity vibration isolation system for the international space station, in Spacebound 2000, Vancouver, BC, 14–17 May (2000)

  7. 7.

    K.K. Denoyer, C. Johnson, Recent achievements in vibration isolation systems for space launch and on-orbit applications, in 52nd International Astronautical Congress, Toulouse, France, 1–5 October (2001)

  8. 8.

    D.J. Ewins, Modal Testing: Theory, Practice and Application, 2nd edn. (Research Studies Press, 2000)

  9. 9.

    T.G. Carne, D.T. Griffith, M.E. Casias, Support conditions for free boundary-condition modal testing, in Proceedings of IMAC XXV, Orlando, Florida, 19–22 February (2007), Paper No. 295

  10. 10.

    C.-M. Lee, V.N. Goverdovskiy, A.I. Temnikov, J. Sound Vibr. 302, 865 (2007)

    ADS  Article  Google Scholar 

  11. 11.

    P. Alabuzhev, A. Gritchin, L. Kim, G. Migirenko, V. Chon, P. Stepanov, Vibration Protecting and Measuring Systems with Quasi-Zero Stiffness (Hemisphere Publishing, NY, 1989)

  12. 12.

    A. Carrella, M.J. Brennan, T.P. Waters, V. Lopes, Int. J. Mech. Sci. 55, 22 (2012)

    Article  Google Scholar 

  13. 13.

    A. Carrella, M.J. Brennan, I. Kovacic, T.P. Waters, J. Sound Vibr. 322, 707 (2009)

    ADS  Article  Google Scholar 

  14. 14.

    A. Carrella, M.J. Brennan, T.P. Waters, J. Mech. Sci. Technol. 21, 946 (2007)

    Article  Google Scholar 

  15. 15.

    A. Carrella, M.J. Brennan, T.P. Waters., J. Sound Vibr. 301, 678 (2007)

    ADS  Article  Google Scholar 

  16. 16.

    A. Carrella, M.I. Friswell, A. Zotov, D.J. Ewins, A. Tichonov, Mech. Syst. Signal Proc. 23, 2228 (2009)

    ADS  Article  Google Scholar 

  17. 17.

    D.L. Platus, Negative-stiffness-mechanism vibration isolation systems, SPIE proceedings, Vibration Control in Microelectronics, Optics, and Metrology 1619, 44 (1991)

  18. 18.

    W.S. Robertson, M.R.F. Kidner, B.S. Cazzolato, A.C. Zander, J. Sound Vibr. 326, 88 (2009)

    ADS  Article  Google Scholar 

  19. 19.

    W. Robertson, B. Cazzolato, A. Zander, J. Sound Vib. 331, 1331 (2012)

    ADS  Article  Google Scholar 

  20. 20.

    C.V. Jutte, S. Kota, J. Mech. Design 130 (2008)

  21. 21.

    C.V. Jutte, S. Kota, J. Mech. Design 132 (2010)

  22. 22.

    S. Keye, R. Keimer, S. Homann, Aerospace Sci. Technol. 13, 165 (2009)

    Article  Google Scholar 

  23. 23.

    F. Mattioni, P.M. Weaver, K.D. Potter, M.I. Friswell, Int. J. Solids Struct. 45, 657 (2008)

    Article  MATH  Google Scholar 

  24. 24.

    A. Carrella, M.I. Friswell, A passive vibration isolator incorporating a composite bistable plate, in ENOC 08, St. Petersburg, Russia, 30 June–4 July 2008

  25. 25.

    A. Carrella, M.I. Friswell, A. Pirrera, G.S. Aglietti, Numerical and experimental analysis of a square bistable plate, in ISMA 08, Leuven, Belgium, 15–17 September 2008

  26. 26.

    L. Kela, P. Vahaoja, Appl. Mech. Rev. 62, 060801 (2009)

    ADS  Article  Google Scholar 

  27. 27.

    C.G. Diaconu, P.M. Weaver, F. Mattioni, Thin-Walled Struct. 46, 689 (2008)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to M.I. Friswell.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Friswell, M., Saavedra Flores, E. Dynamic isolation systems using tunable nonlinear stiffness beams. Eur. Phys. J. Spec. Top. 222, 1563–1573 (2013). https://doi.org/10.1140/epjst/e2013-01945-5

Download citation


  • Residual Stress
  • European Physical Journal Special Topic
  • Energy Harvest
  • Composite Beam
  • Vibration Isolation