The European Physical Journal Special Topics

, Volume 222, Issue 7, pp 1563–1573 | Cite as

Dynamic isolation systems using tunable nonlinear stiffness beams

  • M.I. FriswellEmail author
  • E.I. Saavedra Flores
Regular Article


Vibration isolation devices are required to reduce the forcing into the supporting structure or to protect sensitive equipment from base excitation. A suspension system with a low natural frequency is required to improve isolation, but with linear supports the minimum stiffness is bounded by the static stiffness required to support the equipment. However, nonlinear high-static-low-dynamic-stiffness (HSLDS) mounts may be designed, for example by combining elastic springs in particular geometries, to give the required nonlinear force-displacement characteristics. Current approaches to realise the required nonlinear characteristics are often inconvenient. Furthermore, the weight of the supported equipment, the environment, or the structural stiffness may change. This paper investigates the design of HSLDS isolation mounts using beams of tunable geometric nonlinear stiffness. In order to obtain the nonlinear response required, we first study the case of generic beams subject to static loads that are able to tune their nonlinear force-displacement characteristics to ensure that the isolators have very low dynamic stiffness. Tuning is achieved by actuators at the ends of the beams that prescribe the axial displacement and rotation. Secondly, we study a composite beam with an initial thermal pre-stress, resulting in internal stresses that give the required nonlinear response.


Residual Stress European Physical Journal Special Topic Energy Harvest Composite Beam Vibration Isolation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.I. Friswell, J.E.T. Penny, S.D. Garvey, A.W. Lees, Dynamics of Rotating Machines (Cambridge University Press, 2010)Google Scholar
  2. 2.
    G. Genta, Vibration of Structures and Machines: Practical Aspects (Springer-Verlag, 1995)Google Scholar
  3. 3.
    D.J. Inman, Engineering Vibrations, 3rd edn. (Pearson, 2008)Google Scholar
  4. 4.
    E.I. Rivin, Passive Vibration Isolation (Wiley-Blackwell, 2003)Google Scholar
  5. 5.
    L. Lacoste, Physics 5, 178 (1934)ADSCrossRefGoogle Scholar
  6. 6.
    M.S. Whorton, g-limit: A microgravity vibration isolation system for the international space station, in Spacebound 2000, Vancouver, BC, 14–17 May (2000)Google Scholar
  7. 7.
    K.K. Denoyer, C. Johnson, Recent achievements in vibration isolation systems for space launch and on-orbit applications, in 52nd International Astronautical Congress, Toulouse, France, 1–5 October (2001)Google Scholar
  8. 8.
    D.J. Ewins, Modal Testing: Theory, Practice and Application, 2nd edn. (Research Studies Press, 2000)Google Scholar
  9. 9.
    T.G. Carne, D.T. Griffith, M.E. Casias, Support conditions for free boundary-condition modal testing, in Proceedings of IMAC XXV, Orlando, Florida, 19–22 February (2007), Paper No. 295Google Scholar
  10. 10.
    C.-M. Lee, V.N. Goverdovskiy, A.I. Temnikov, J. Sound Vibr. 302, 865 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    P. Alabuzhev, A. Gritchin, L. Kim, G. Migirenko, V. Chon, P. Stepanov, Vibration Protecting and Measuring Systems with Quasi-Zero Stiffness (Hemisphere Publishing, NY, 1989)Google Scholar
  12. 12.
    A. Carrella, M.J. Brennan, T.P. Waters, V. Lopes, Int. J. Mech. Sci. 55, 22 (2012)CrossRefGoogle Scholar
  13. 13.
    A. Carrella, M.J. Brennan, I. Kovacic, T.P. Waters, J. Sound Vibr. 322, 707 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    A. Carrella, M.J. Brennan, T.P. Waters, J. Mech. Sci. Technol. 21, 946 (2007)CrossRefGoogle Scholar
  15. 15.
    A. Carrella, M.J. Brennan, T.P. Waters., J. Sound Vibr. 301, 678 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    A. Carrella, M.I. Friswell, A. Zotov, D.J. Ewins, A. Tichonov, Mech. Syst. Signal Proc. 23, 2228 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    D.L. Platus, Negative-stiffness-mechanism vibration isolation systems, SPIE proceedings, Vibration Control in Microelectronics, Optics, and Metrology 1619, 44 (1991)Google Scholar
  18. 18.
    W.S. Robertson, M.R.F. Kidner, B.S. Cazzolato, A.C. Zander, J. Sound Vibr. 326, 88 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    W. Robertson, B. Cazzolato, A. Zander, J. Sound Vib. 331, 1331 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    C.V. Jutte, S. Kota, J. Mech. Design 130 (2008)Google Scholar
  21. 21.
    C.V. Jutte, S. Kota, J. Mech. Design 132 (2010)Google Scholar
  22. 22.
    S. Keye, R. Keimer, S. Homann, Aerospace Sci. Technol. 13, 165 (2009)CrossRefGoogle Scholar
  23. 23.
    F. Mattioni, P.M. Weaver, K.D. Potter, M.I. Friswell, Int. J. Solids Struct. 45, 657 (2008)CrossRefzbMATHGoogle Scholar
  24. 24.
    A. Carrella, M.I. Friswell, A passive vibration isolator incorporating a composite bistable plate, in ENOC 08, St. Petersburg, Russia, 30 June–4 July 2008Google Scholar
  25. 25.
    A. Carrella, M.I. Friswell, A. Pirrera, G.S. Aglietti, Numerical and experimental analysis of a square bistable plate, in ISMA 08, Leuven, Belgium, 15–17 September 2008Google Scholar
  26. 26.
    L. Kela, P. Vahaoja, Appl. Mech. Rev. 62, 060801 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    C.G. Diaconu, P.M. Weaver, F. Mattioni, Thin-Walled Struct. 46, 689 (2008)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.College of Engineering, Swansea UniversitySwanseaUK
  2. 2.Departamento de Ingeniería en Obras Civiles, Universidad de Santiago de ChileSantiagoChile

Personalised recommendations