Advertisement

The European Physical Journal Special Topics

, Volume 222, Issue 7, pp 1503–1518 | Cite as

A variable stiffness transverse mode shape memory alloy actuator as a minimally invasive organ positioner

  • W. Anderson
  • A. Eshghinejad
  • R. Azadegan
  • C. Cooper
  • M. Elahinia
Regular Article

Abstract

Smart materials have gained a great deal of attention in recent years because of their unique actuation properties. Actuators are needed in the medical field where space is limited. Presented within this work is an organ positioner used to position the esophagus away from the left atrium to avoid the development of an esophageal fistula during atrial fibrillation (afib) ablation procedures. Within this work, a subroutine was implemented into the finite element framework to predict the midspan load capacity of a near equiatomic NiTi specimen in both the super elastic and shape memory regimes. The purpose of the simulations and experimental results was to develop a design envelope for the organ positioning device. The transverse loading experiments were conducted at several different temperatures leading to the ability to design a variable stiffness actuator. This is essential because the actuator must not be too stiff to injure the organ it is positioning. Extended further, geometric perturbations were applied in the virtual model and the entire design envelope was developed. Further, nitinol was tested for safety in the radio-frequency environment (to ensure that local heating will not occur in the ablation environment). With the safety of the device confirmed, a primitive prototype was manufactured and successfully tested in a cadaver. The design of the final device is also presented. The contribution of this work is the presentation of a new type of positoning device for medical purposes (NiTiBOP). In the process a comprehensive model for transverse actuation of an SMA actuator was developed and experimentally verified.

Keywords

Austenite Martensite Shape Memory Alloy European Physical Journal Special Topic Energy Harvest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Gillet, E. Patoor, M. Berveiller, J. Intell. Material Syst. Struct. 9 (1998), doi: 10.1177/1045389X9800900505Google Scholar
  2. 2.
    L.C. Brinson, M.S. Huang, J. Intell. Material Syst. Struct. 7, 108 (1996)CrossRefGoogle Scholar
  3. 3.
    L.C. Brinson, Intell. Mater. Syst. Struct. 4, 229 (1993)CrossRefGoogle Scholar
  4. 4.
    M. Brocca, L. Brinson, Z.P. Bazant, J. Mech. Phys. Solids 50, 1051 (2002)ADSCrossRefMATHGoogle Scholar
  5. 5.
    D.C. Lagoudas, Shape Memory Alloys Modeling and Engineering Applications (Springer Science+Business Media, 2008), ISBN: 978-0-387-47684-1Google Scholar
  6. 6.
    Y. Han, Mechatronics 11, 677 (2001)CrossRefGoogle Scholar
  7. 7.
    M. Kohl, E. Just, W. Pfleging, S. Miyazaki, Sensors Actuators 83, 208 (2000)CrossRefGoogle Scholar
  8. 8.
    A.V. Irzhak, V.S. Kalashnikov, V.V. Koledov, D.S.K.G.A. Lebedev, P.V. Lega, N.A. Pikhtin, I.S. Tarasov, V.G. Shavrov, A.V. Shelyakov, Technical Phys. Lett. 36, 329 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    J. Rejzner, C. Lexcellent, B. Raniecki, Int. J. Mech. Sci. 44, 665 (2002)CrossRefMATHGoogle Scholar
  10. 10.
    Z. Chaudhry, C.A. Rogers, J. Intell. Material Syst. Struct. 2, 581 (1991)CrossRefGoogle Scholar
  11. 11.
    M. Their, A. Mick, D. Drescher, C. Bourauel, J. Materials Sci. 26, 6473 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    S. Hashemi, S. Khadem, Int. J. Mech. Sci. 48, 44 (2006)CrossRefMATHGoogle Scholar
  13. 13.
    P.K. Purohit, K. Bhattacharya, Int. J. Solids Struct. 39, 3907 (2002)CrossRefMATHGoogle Scholar
  14. 14.
    D.J. Hartl, G. Chatzigeorgiou, D.C. Lagoudas, Int. J. Plasticity 26, 1485 (2010)CrossRefMATHGoogle Scholar
  15. 15.
    H. Aupperle, N. Doll, T. Walther, P. Kornherr, C. Ullmann, H.-A. Schoon, F.W. Mohr, J. Thoracic Cardiovascular Surgery 130, 1549 (2005)CrossRefGoogle Scholar
  16. 16.
    T.D. Bahnson, Pacing Clinical Electrophys. 32, (2009)Google Scholar
  17. 17.
    B. Hall, A. Shah, D. Huang, S. Rosero, J. Daubert, J. Interventional Cardiac Electrophys. 13, 135 (2005)CrossRefGoogle Scholar
  18. 18.
    M.S. Arruda, L. Armaganijan, L.D. Biase, R. Rashidi, A. Natale, J. Cardiovascular Electrophys. 32, 248 (2009)Google Scholar
  19. 19.
    K. Kanjwal, R. Yeasting, H. Elsamaloty, C. Baptista, J. Maloney, M. Sheikh, M. Elahinia, W. Anderson, J. Maloney, J. Interventional Cardiac Electrophys. 30, 45 (2011)CrossRefGoogle Scholar
  20. 20.
    W. Anderson, A. Eshghinejad, M. Elahinia, An Organ Positioner to Mitigate Collateral Tissue Damage in Esophagus during Atrial Fibrilation, in Design of Medical Devices Conference (University of Minnesota, 2011)Google Scholar
  21. 21.
    F. Auricchio, R.L. Taylor, Shape memory alloy superelastic behavior: 3D finite-element simulation, in Proc. 3rd Int. Conf. on Intelligent Materials (1996), p. 487Google Scholar
  22. 22.
    F. Auricchio, D. Fugazza, R. DesRoches, Intell. Mater. Syst. Struct. 19, 47 (2008)CrossRefGoogle Scholar
  23. 23.
    K. Tanaka, Res. Mech. 18, 251 (1986)Google Scholar
  24. 24.
    B. Raniecki, C. Lexcellent, Eur. J. Mech. A/Solids 17, 185 (1998)CrossRefMATHGoogle Scholar
  25. 25.
    M.O. Moussa, Z. Moumni, O.D.C. Touz, W. Zaki, J. Intell. Material Syst. Struct. 23, 1593 (2012)CrossRefGoogle Scholar
  26. 26.
    B. Peultier, T.B. Zineb, E. Patoor, Mech. Materials 38, 510 (2006)CrossRefGoogle Scholar
  27. 27.
    L. Saint-Sulpice, S.A. Chirani, S. Calloch, Mech. Materials 41, 12 (2009)CrossRefGoogle Scholar
  28. 28.
    Y. Chemisky, A. Duval, E. Patoor, T.B. Zineb, Mech. Materials 43, 361 (2011)CrossRefGoogle Scholar
  29. 29.
    J. Arghavani, F. Auricchio, R. Naghdabadi, A. Reali, S. Sohrabpour, Int. J. Plasticity 26, 976 (2010)CrossRefMATHGoogle Scholar
  30. 30.
    P. Sedlk, M. Frost, B. Beneov, T.B. Zineb, P. Ittner, Int. J. Plasticity 39, 132 (2012)CrossRefGoogle Scholar
  31. 31.
    J. Boyd, D. Lagoudas, Int. J. Plasticity 12, 805 (1996)CrossRefMATHGoogle Scholar
  32. 32.
    M.A. Qidwai, D.C. Lagoudas, Int. J. Plasticity 16, 1309 (2000)CrossRefMATHGoogle Scholar
  33. 33.
    Y. Gillet, E. Patoor, M. Berveiller, J. Phys. 5, 343 (1995)Google Scholar
  34. 34.
    E.Q. Sun, available at: http://mekanik.net/NETE/Shear

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • W. Anderson
    • 1
  • A. Eshghinejad
    • 1
  • R. Azadegan
    • 2
  • C. Cooper
    • 3
  • M. Elahinia
    • 1
  1. 1.University of Toledo, College of EngineeringToledoUSA
  2. 2.University of Michigan, College of EngineeringMichiganUSA
  3. 3.University of Toledo, Medical CenterToledoUSA

Personalised recommendations