Skip to main content

Advertisement

Log in

Spreading processes on dynamically changing contact networks

  • Regular Article
  • Simultaneous Dynamics ON and OF Networks
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We develop and analyze an agent-based model for the study of information propagation in dynamic contact networks. We represent information as a state of a node in a network that can be probabilistically transferred to an adjacent node within a single time step. The model is based on a closed (yet sufficiently large) population that can support processes of link generation and annihilation using different contact regimes. Our study is confined to the case of homogeneous contacts, where each agent establishes and breaks contacts in the same way. We consider information to be available for spreading in a fixed time window (i.e. finite memory). We find, surprisingly, that information transmission (measured as the proportion of informed nodes after a fixed number of time steps) is identical for dynamic preferential and random networks, but radically different for the associate mixing contact regime. We also find that the probability of transmission is, similarly counterintuitively, not a main driver of the process as opposed the the main network par maters determining contact lifetime and the turnover rate on connections. We discuss the explanation and the significance of these results in the light of the fundamental difference between dynamic and static (cumulative) networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Newman, Networks: an introduction (Oxford University Press, Inc., 2010)

  2. S.N. Dorogovtsev, Lectures on complex networks (Oxford University Press, 2010)

  3. D. Easley, J. Kleinberg, Networks, crowds, and markets (Cambridge University Press, 2010)

  4. R. Cohen, S. Havlin, Complex networks: structure, robustness and function (Cambridge University Press, 2010)

  5. B. Bollobás, R. Kozma, D. Miklos, Handbook of large-scale random networks, Vol. 18 (Springer, 2009)

  6. P.S. Bearman, J. Moody, K. Stovel, Amer. J. Sociol. 110, 44 (2004)

    Article  Google Scholar 

  7. L. Gulyás, S. Khor, R. Legéndi, G. Kampis, Elementary dynamic networks. In Sunbelt XXXI, International Sunbelt Social Network Conference, St. Pete Beach, FL (2011)

  8. L. Isella, J. Stehlé, A. Barrat, C. Cattuto, J.F. Pinton, W. Van den Broeck, J. Theoretical Biol. 271, 166 (2011)

    Article  Google Scholar 

  9. L. Isella, M. Romano, A. Barrat, C. Cattuto, V. Colizza, W. Van den Broeck, F. Gesualdo, E. Pandolfi, L. Ravà, C. Rizzo, et al., PLoS One 6, e17144 (2011)

    Article  ADS  Google Scholar 

  10. M. Morris, H. Epstein, M. Wawer, PLoS One 5, e14092 (2010)

    Article  ADS  Google Scholar 

  11. M. Morris, A.E. Kurth, D.T. Hamilton, J. Moody, S. Wakefield, Amer. J. Public Health 99, 1023 (2009)

    Article  Google Scholar 

  12. M.J. Keeling, K.T.D. Eames, J. Royal Soc. Interf. 2, 295 (2005)

    Article  Google Scholar 

  13. R.A. Stein, Int. J. Infect. Diseases 15, e510 (2011)

    Article  Google Scholar 

  14. P.M.A. Sloot, S.V. Ivanov, A.V. Boukhanovsky, D.A.M.C. Van De Vijver, C.A.B. Boucher, Int. J. Computer Math. 85, 1175 (2008)

    Article  MATH  Google Scholar 

  15. S. Mei, P.M.A. Sloot, R. Quax, Y. Zhu, W. Wang, Math. Computers Simul. 80, 1018 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. R.O. Legendi, L. Gulyas, Effects of time-dependent edge dynamics on properties of cumulative networks, EPNACS-Emergent Properties in Natural and Artificial Complex Systems (2011)

  17. L. Gulyás, G. Kampis, R. Legéndi, Eur. Phys. J. Special Topics 222 (6), 1311 (2013)

    Article  ADS  Google Scholar 

  18. G. Kampis, L. Gulyás, NetSci 2010 The International School and Conference on Network Science, 10 (2010)

  19. R.K. Merton, Science 159, 56 (1968)

    Article  ADS  Google Scholar 

  20. P.L. Krapivsky, S. Redner, Phys. Review E 63, 066123 (2001)

    Article  ADS  Google Scholar 

  21. P.L. Krapivsky, S. Redner, Stat. Mech. Complex Networks, 3 (2003)

  22. R. Albert, A.L. Barabási, Rev. Modern Phys. 74, 47 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. A.L. Barabási, R. Albert, Science 286, 509 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  24. P. Erdos, A. Rényi, Publ. Math. 6, 290 (1959)

    Google Scholar 

  25. P. Erdos, A. Rényi, Magyar Tud. Akad. Mat. Kutató Int. Közl 5, 17 (1960)

    Google Scholar 

  26. B. Bollobás, Random graphs, Vol. 73 (Cambridge University Press, 2001)

  27. M.E.J. Newman, Phys. Rev. Lett. 89, 208701 (2002)

    Article  ADS  Google Scholar 

  28. M. McPherson, L. Smith-Lovin, J.M. Cook, Ann. Rev. Sociol. 415 (2001)

  29. S.M. Goodreau, J.A. Kitts, M. Morris, Demography 46, 103 (2009)

    Article  Google Scholar 

  30. M. Girvan, M.E.J. Newman, Proc. National Acad. Sci. 99, 7821 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. U. Wilensky, Netlogo, http://ccl.northwestern.edu/netlogo. Evanston, IL: Northwestern university. Center for Connected Learning and Computer-Based Modeling (1999)

  32. T. Máhr, R. Bocsi, L. Gulyás, Simulation as a service: The model exploration service. In 3rd World Congress on Social Simulation, Kassel, Germany (2010)

  33. M. Iványi, L. Gulyás, R. Bocsi, G. Szemes, R. Mészáros, Model exporation module. In Agent 2007: Complex Interaction and Social Emergence Conference, Evanston, IL, November 15–18 (2010)

  34. L. Gulyás, A. Szabó, R. Legéndi, T. Máhr, R. Bocsi, G. Kampis, Tools for large scale (distributed) agent-based computational experiments. 2011 Computational Social Science Society of America Annual Conference, Santa Fe, NM, USA (2012)

  35. F. Liljeros, C.R. Edling, L.A.N.A Amaral, E.H. Stanley, Y. Åberg, Nature 411, 907 (2001)

    Article  ADS  Google Scholar 

  36. N. Zarrabi, M. Prosperi, R.G. Belleman, M. Colafigli, A. De Luca, P.M.A. Sloot, PloS one 7, e46156 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to László Gulyás or George Kampis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulyás, L., Kampis, G. Spreading processes on dynamically changing contact networks. Eur. Phys. J. Spec. Top. 222, 1359–1376 (2013). https://doi.org/10.1140/epjst/e2013-01931-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-01931-y

Keywords

Navigation