The European Physical Journal Special Topics

, Volume 222, Issue 5, pp 1263–1270 | Cite as

Post-transient relaxation in graphene after an intense laser pulse

  • J. Zhang
  • T. Li
  • J. Wang
  • J. Schmalian
Regular Article Semi-metals and the Topological Insulator


High intensity laser pulses were recently shown to induce a population inverted transient state in graphene [T. Li, et al., Phys. Rev. Lett. 108, 167401 (2012)]. Using a combination of hydrodynamic arguments and a kinetic theory we determine the post-transient state relaxation of hot, dense, population inverted electrons towards equilibrium. The cooling rate and charge-imbalance relaxation rate are determined from the Boltzmann-equation including electron-phonon scattering. We show that the relaxation of the population inversion, driven by inter-band scattering processes, is much slower that the relaxation of the electron temperature, which is determined by intra-band scattering processes. This insight may be of relevance for the application of graphene as an optical gain medium.


Electron Temperature European Physical Journal Special Topic Optical Phonon Population Inversion Intense Laser Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Li, L. Luo, M. Hupalo, J. Zhang, M.C. Tringides, J. Schmalian, J. Wang, Phys. Rev. Lett. 108, 167401 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    L. Fritz, J. Schmalian, M. Müller, S. Sachdev, Phys. Rev. B 78, 085416 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    M. Müller, J. Schmalian, L. Fritz, Phys. Rev. Lett. 103, 025301 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    M.S. Foster, I.L. Aleiner, Phys. Rev. B 79, 085415 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    J. Zhang, J. Schmalian, T. Li, J. Wang (preprint)Google Scholar
  6. 6.
    R. Bistritzer, A.H. MacDonald, Phys. Rev. Lett. 102, 206410 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    W.-K. Tse, S. Das Sarma, Phys. Rev. B 79, 235406 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    S. Das Sarma, J.K. Jain, R. Jalabert, Phys. Rev. B 41, 3561 (1990)ADSCrossRefGoogle Scholar
  9. 9.
    T. Kawamura, S. Das Sarma, R. Jalabert, J.K. Jain, Phys. Rev. B 42, 5407 (1990)ADSCrossRefGoogle Scholar
  10. 10.
    D.E. Sheehy, J. Schmalian, Phys. Rev. Lett. 99 226803 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    S. Butscher, F. Milde, M. Hirtschulz, E. Malic, A. Knorr, Appl. Phys. Lett. 91, 203103 (2007)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • J. Zhang
    • 1
  • T. Li
    • 2
  • J. Wang
    • 2
  • J. Schmalian
    • 3
  1. 1.Department of PhysicsCollege of William and MaryWilliamsburgUSA
  2. 2.Ames Laboratory and Department of Physics and AstronomyIowa State UniversityAmesUSA
  3. 3.Institute for Theory of Condensed Matter and Center for Functional NanostructuresKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations