The European Physical Journal Special Topics

, Volume 222, Issue 5, pp 1057–1063 | Cite as

Critical behavior of a filling-controlled Mott-transition observed at an organic field-effect-transistor interface

  • H. M. Yamamoto
  • J. Ueno
  • R. Kato
Regular Article Mott Insulators


An organic Mott-insulator κ-(BEDT-TTF)2Cu[N(CN)2] Cl(κ-Cl) on SiO2/Si substrate showed an ambipolar field-effect-transistor (FET) characteristics without any hysteresis, which means a continuous Mott-transition at filling-controlled regime (BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene). In order to extract the critical exponent in the vicinity of the Mott-insulating phase, an analysis based on Efros-Shklovskii approximation is performed. The model fitting well reproduces the device characteristics over wide range of temperature and gate voltage. In this analysis, Coulomb gap temperature that characterizes the ground state of doped Mott-insulator shows inversely proportional critical behavior against the doping concentration.


European Physical Journal Special Topic Critical Exponent Gate Voltage Critical Behavior Tetrathiafulvalene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    K. Miyagawa, K. Kanoda, A. Kawamoto, Chem. Rev. 104, 5635 (2004)CrossRefGoogle Scholar
  3. 3.
    Y. Kawasugi, H.M. Yamamoto, N. Tajima, T. Fukunaga, K. Tsukagoshi, R. Kato, Phys. Rev. Lett. 103, 116801/1 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Kawasugi, H.M. Yamamoto, N. Tajima, T. Fukunaga, K. Tsukagoshi, R. Kato, Phys. Rev. B 84, 125129/1 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    A.L. Efros, B.I. Shklovskii, J. Phys. C8, L49 (1975)ADSGoogle Scholar
  6. 6.
    Y. Takahide, M. Kimata, K. Kodama, T. Terashima, S. Uji, M. Kobayashi, H.M. Yamamoto, Phys. Rev. B 84, 035129/1 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    M. Watanabe, Y. Ootuka, K.M. Itoh, E.E. Haller, Phys. Rev. B 58, 9851 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    H.M. Yamamoto, M. Nakano, M. Suda, M. Kawasaki, Y. Iwasa, R. Kato (submitted)Google Scholar
  9. 9.
    G. Sordi, K. Haule, A.M.S. Tremblay, Phys. Rev. B 84, 075161 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Furukawa, T. Ohashi, Y. Koyama, N. Kawakami, Phys. Rev. B 82, 161101 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    G. Kotliar, E. Lange, M.J. Rozenberg, Phys. Rev. Lett. 84, 5180 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    F. Kagawa, K. Miyagawa, K. Kanoda, Nature 436, 534 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, Y. Tokura, Nature 487, 459 (2012)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • H. M. Yamamoto
    • 1
    • 2
    • 3
  • J. Ueno
    • 2
  • R. Kato
    • 2
  1. 1.Institute for Molecular ScienceCIMoSOkazaki, AichiJapan
  2. 2.Advanced Science InstituteRIKENWako, SaitamaJapan
  3. 3.JST-PRESTOKawaguchi, SaitamaJapan

Personalised recommendations