The European Physical Journal Special Topics

, Volume 222, Issue 5, pp 1035–1046 | Cite as

Modeling of dynamics of field-induced transformations in charge density waves

  • T. Yi
  • N. KirovaEmail author
  • S. Brazovskii
Regular Article Charge Density Waves


We present a modeling of stationary states and their transient dynamic for charge density waves in restricted geometries of realistic junctions under the applied voltage or the passing current. The model takes into account multiple fields in mutual nonlinear interactions: the amplitude and the phase of the charge density wave complex order parameter, distributions of the electric field, the density and the current of normal carriers. The results show that stationary states with dislocations are formed after an initial turbulent multi-vortex process. Static dislocations multiply stepwise when the voltage across or the current through the junction exceed a threshold. The dislocation core forms a charge dipole which concentrates a steep drop of the voltage, thus working as a self-tuned microscopic tunnelling junction. That can gives rise to features observed in experiments on the inter-layer tunneling in mesa-junctions.


Vortex Soliton European Physical Journal Special Topic Vortex Core Topological Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Proceedings of the International Research School and Workshop on Electronic Crystals ECRYS 2011, Physcia B 407, edited by S. Brazovskii, N. Kirova, P. Monceau (2011)Google Scholar
  2. 2.
    P. Monceau, Adv. Phys. 61, 325 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    N.P. Ong, K. Maki, Phys. Rev. B 32, 6582 (1985)ADSCrossRefGoogle Scholar
  4. 4.
    L.P. Gor’kov, JETP Lett. 38, 87 (1983)ADSGoogle Scholar
  5. 5.
    L.P. Gor’kov, Sov. Phys. JETP 59, 1057 (1984)Google Scholar
  6. 6.
    I. Batistic, A. Bjelis, L. Gor’kov, J. Phys. (France) 45, 1049 (1984)CrossRefGoogle Scholar
  7. 7.
    S.G. Lemay, M.C. de Lind van Wijngaarden, T.L. Adelman, R.E. Thorne, Phys. Rev. B 57, 12781 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    A.F. Isakovic, P.G. Evans, J. Kmetko, K. Cicak, Z. Cai, B. Lai, R.E. Thorne, Phys. Rev. Lett. 96, 046401 (2006) and refs. thereinADSCrossRefGoogle Scholar
  9. 9.
    A. Ayari, R. Danneau, H. Requardt, L. Ortega, J.E. Lorenzo, P. Monceau, R. Currat, S. Brazovskii, G. Grübel, Phys. Rev. Lett. 93, 106404 (2004) and refs. thereinADSCrossRefGoogle Scholar
  10. 10.
    S. Brazovskii, S. Matveenko, Sov. Phys. JETP 74, 864 (1992)Google Scholar
  11. 11.
    N. Kirova, S. Brazovskii, J. Phys. IV (France) 131, 147 (2005)CrossRefGoogle Scholar
  12. 12.
    Yu.I. Latyshev, P. Monceau, A.P. Orlov, S.A. Brazovskii, Th. Fournier, Supercond. Sci. Technol. 20, S87 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Yu.I. Latyshev, P. Monceau, S.A. Brazovskii, A.P. Orlov, T. Yamashita L.N. Bulaevskii, Phys. Stat. Sol. (c) 3, 3110 (2006)CrossRefGoogle Scholar
  14. 14.
    Y.I. Latyshev, P. Monceau, S. Brazovskii, A.P. Orlov, T. Fournier, Phys. Rev. Lett. 95, 266402 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    Y.I. Latychev, P. Monceau, S. Brazovskii, A.P. Orlov, T. Fournier, Phys. Rev. Lett. 96, 116402 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    D. Feinberg, J. Friedel, J. Phys. (France) 49, 485 (1988)CrossRefGoogle Scholar
  17. 17.
    D. Feinberg, J. Friedel, Low-dimensional electronic properties of molybdenum bronzes and oxides (Kluwer Academic Publisher, 1989), p. 407Google Scholar
  18. 18.
    S. Brazovskii, S. Matveenko, Sov. Phys. JETP 72, 860 (1991)Google Scholar
  19. 19.
    S. Brazovskii, Ch. Brun, Zhao-Zhong Wang, P. Monceau, Phys. Rev. Lett. 108, 096801 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Tae-Hwan Kim, Han Woong Yeom, Phys. Rev. Lett. 109, 246802 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    T. Yi, Y. Luo, A. Rojo-Bravo, N. Kirova, S. Brazovskii, J. Supercond. Nov. Mag. 25, 1323 (2012)CrossRefGoogle Scholar
  22. 22.
    T. Yi, Y. Luo, A. Rojo-Bravo, S. Brazovskii, Physica B 407, 1839 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    T. Yi, Modeling of dynamical vortex states in charge density waves, Ph.D. thesis, University Paris-Sud 11, 2012,
  24. 24.
  25. 25.
    N. Kirova, Curr. Appl. Phys. 6, 97 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    N. Kirova, IJHSES 17, 172 (2007)Google Scholar
  27. 27.
    R. Yusupov, T. Mertelj, V.V. Kabanov, S. Brazovskii, J.-H. Chu, I.R. Fisher, D. Mihailovic, Nat. Phys. 6, 681 (2010)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.CNRS, LPTMS, URM 8502Univerisité Paris-sudOrsayFrance
  2. 2.CNRS, LPS, URM 8626Univerisité Paris-sudOrsayFrance
  3. 3.Departement of physicsSouth University of Science and Technology of ChinaShenzhen, GuangdongChina
  4. 4.International Institute of PhysicsNatal, Rio Grande do NorteBrazil

Personalised recommendations