The European Physical Journal Special Topics

, Volume 222, Issue 2, pp 457–472 | Cite as

Event detection, multimodality and non-stationarity: Ordinal patterns, a tool to rule them all?

  • D. Arroyo
  • P. Chamorro
  • J.M. Amigó
  • F.B. Rodríguez
  • P. Varona
Regular Article Applications to Real World Time Series

Abstract

In this work, we apply ordinal analysis of time series to the characterisation of neuronal activity. Automatic event detection is performed by means of the so-called permutation entropy, along with the quantification of the relative cardinality of forbidden patterns. In addition, multivariate time series are characterised using the joint permutation entropy. In order to illustrate the suitability of the ordinal analysis for characterising neurophysiological data, we have compared the measures based on ordinal patterns of time series to the tools typically used in the context of neurophysiology.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Chamorro, C. Muñiz, R. Levi, D. Arroyo, F.B. Rodríguez, P. Varona, PLoS ONE 7, e40887 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    K. Keller, H. Lauffer, M. Sinn, Chaos and Complexity Letters (Nova Publishers, 2007), Vol. 2, chap. Ordinal analysis of EEG time series, p. 247Google Scholar
  3. 3.
    K. Keller, M. Sinn, Physica D: Nonlinear Phenomena 239, 997 (2010)MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    J.M. Amigó, Physica D: Nonlinear Phenomena 241, 789 (2012)MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    C. Bandt, B. Pompe, Phys. Rev. Lett. 88, 174102 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    P. Graben, J.D. Saddy, M. Schlesewsky, J. Kurths, Phys. Rev. E. Stat. Phys. Plasmas Fluids Relat Interdiscip Topics 62, 5518 (2000)CrossRefGoogle Scholar
  7. 7.
    K. Keller, M. Sinn, J. Emons, Stoch. Dyn. 7, 247 (2007)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    G. Ouyang, C. Dang, D.A. Richards, X. Li, Clin. Neurophysiol 121, 694 (2010)CrossRefGoogle Scholar
  9. 9.
    U. Parlitz, S. Berg, S. Luther, A. Schirdewan, J. Kurths, N. Wessel, Comput. Biol. Med. 42, 319 (2012)CrossRefGoogle Scholar
  10. 10.
    Y. Cao, W.w. Tung, J.B. Gao, V.A. Protopopescu, L.M. Hively, Phys. Rev. E 70, 046217 (2004)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    C. Piccardi, Chaos 16, 043115:1 (2006)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    D. Arroyo, G. Alvarez, J.M. Amigó, Chaos: An Interdisciplinary J. Nonl. Sci. 19, 023125 (2009)CrossRefGoogle Scholar
  13. 13.
    D. Arroyo, G. Alvarez, J.M. Amigó, S. Li, Comm. Nonlinear Sci. Numer. Simul. 16, 805 (2011)ADSMATHCrossRefGoogle Scholar
  14. 14.
    M. Staniek, K. Lehnertz, Phys. Rev. Lett. 100, 158101 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    M. Martini, T. Kranz, T. Wagner, K. Lehnertz, Phys. Rev. E 83, 1 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    J.S. Cánovas, A. Guillamón, M.D.C. Ruíz, Physica D: Nonlinear Phenom. 240, 1199 (2011)ADSMATHCrossRefGoogle Scholar
  17. 17.
    J.M. Amigó, R. Monetti, T. Aschenbrenner, W. Bunk, Chaos: An Interdisciplinary J. Nonl. Sci. 22, 013105 (2012)CrossRefGoogle Scholar
  18. 18.
    F. Murtagh, in Selected Contributions in Data Analysis and Classification, edited by P. Brito, G. Cucumel, P. Bertrand, F. Carvalho Studies in Classification, Data Analysis, and Knowledge Organization, ISBN 978-3-540-73558-8 (Springer Berlin Heidelberg, 2007), p. 299Google Scholar
  19. 19.
    C.K. Peng, A.C.C. Yang, A.L. Goldberger, Chaos (Woodbury, N.Y.) 17, 015115 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    T.P. Coleman, S.S. Sarma, Neural Comput. 22, 2002 (2010)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    R.Q. Quiroga, O.A. Rosso, E. Basar, M. Schürmann, Biol. Cybern. 84, 291 (2001)MATHCrossRefGoogle Scholar
  22. 22.
    H. Nyquist, Proc. IEEE 90, 280 (2002)CrossRefGoogle Scholar
  23. 23.
    A. Szucs, J Neurosci Meth. 81, 159 (1998)CrossRefGoogle Scholar
  24. 24.
    Y. Gao, I. Kontoyiannis, E. Bienenstock, Entropy 10, 71 (2008)MathSciNetADSMATHCrossRefGoogle Scholar
  25. 25.
    J.M. Amigó, J. Szczepaski, E. Wajnryb, M.V. Sanchez-Vives, Neural Comput. 16, 717 (2004)MATHCrossRefGoogle Scholar
  26. 26.
    M. Crumiller, B. Knight, Y. Yu, E. Kaplan, Front. Neurosci. 5, 90 (2011)CrossRefGoogle Scholar
  27. 27.
    N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung, H.H. Liu, Proceedings of the Royal Society of London. Series A: Math. Phys. Eng. Sci. 454, 903 (1998)MathSciNetADSMATHCrossRefGoogle Scholar
  28. 28.
    N. Rehman, D.P. Mandic, Proceedings of the Royal Society A: Math. Phys. Eng. Sci. 466, 1291 (2009)MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    N. Tsakalozos, K. Drakakis, S. Rickard, Signal Proc. 92, 1961 (2012)CrossRefGoogle Scholar
  30. 30.
    S. Mallat, IEEE Trans. Patt. Anal. Mach. Intell. 11, 674 (1989)ADSMATHCrossRefGoogle Scholar
  31. 31.
    O. Rosso, S. Blanco, J. Yordanova, V. Kolev, A. Figliola, M. Schürmann, E. Basar, J. Neurosci. Meth. 105, 65 (2001)CrossRefGoogle Scholar
  32. 32.
    L.G. Gamero, A. Plastino, M.E. Torres, Physica A: Stat. Theor. Phys. 246, 487 (1997)ADSCrossRefGoogle Scholar
  33. 33.
    M. Brin, G. Stuck, Introduction to dynamical systems (Cambridge: Cambridge University Press, 2002)Google Scholar
  34. 34.
    R.G. Andrzejak, T. Kreuz, EPL (Europhys. Lett.) 96, 50012 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    V. Rajagopalan, A. Ray, Signal Proc. 86, 3309 (2006)MATHCrossRefGoogle Scholar
  36. 36.
    K. Keller, M. Sinn, Physica A: Stat. Mech. Appl. 356, 114 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    D.L. Kreher, D.R. Stinson, Combinatorial Algorithms; Generation, Enumeration & Search (CRC Press, 1998)Google Scholar
  38. 38.
    P. Walters, An Introduction to Ergodic Theory, Vol. 79 of Graduate Texts in Mathematics (Springer-Verlag, New York, 1982)Google Scholar
  39. 39.
    J.M. Amigó, S. Zambrano, M.A.F. Sanjuan, EPL (Europhys. Lett.) 83, 60005 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    S. Gupta, A. Ray, J. Stat. Phys. 134, 337 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
  41. 41.
    T. chung Fu, Eng. Appl. Artificial Intell. 24, 164 (2011)CrossRefGoogle Scholar
  42. 42.
    P. Caminal, B.F. Giraldo, M. Vallverdú, S. Benito, R. Schroeder, a. Voss, Ann. Biomed. Eng. 38, 2542 (2010)CrossRefGoogle Scholar
  43. 43.
    J.D. Rolston, R.E. Gross, S.M. Potter, Front. Neurosci. 4, 31 (2010)CrossRefGoogle Scholar
  44. 44.
    J. Fernandez-Vargas, H.U. Pfaff, F.B. Rodriguez, P. Varona, Front. Neural Circ. 7, 27 (2013)Google Scholar
  45. 45.
    A.I. Selverston, M. Moulins (eds.), The Crustacean Stomatogastric System: a Model for the Study of Central Nervous System (Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1987)Google Scholar
  46. 46.
    E. Marder, D. Bucher, Curr Biol 11, R986 (2001)CrossRefGoogle Scholar
  47. 47.
    J.H. Peck, S.T. Nakanishi, R. Yaple, R.M. Harris-Warrick, J. Neurophysiol. 86, 2957 (2001)Google Scholar
  48. 48.
    A.I. Selverston, M.I. Rabinovich, H.D.I. Abarbanel, R.E. n, A. Szücs, R.D. Pinto, R. Huerta, P. Varona, J. Physiol. (Paris) 94, 357 (2000)CrossRefGoogle Scholar
  49. 49.
    A. Szücs, P. Varona, A.R. Volkovskii, H.D.I. Abarbanel, M.I. Rabinovich, A.I. Selverston, NeuroReport 11, 563 (2000)CrossRefGoogle Scholar
  50. 50.
    P. Varona, J.J. Torres, H.D.I. Abarbanel, M.I.R., R.C. Elson, Biol. Cyb. 84, 91 (2001)CrossRefGoogle Scholar
  51. 51.
    T. Brookings, R. Grashow, E. Marder, Front. Neural Circ. 6, 19 (2012)Google Scholar
  52. 52.
    A. Szucs, R.C. Elson, M.I. Rabinovich, H.D.I. Abarbanel, A.I. Selverston, J. Neurophys. 85, 1623 (2001)Google Scholar
  53. 53.
    J.T. Vogelstein, A.M. Packer, T.A. Machado, T. Sippy, B. Babadi, R. Yuste, L. Paninski, J. Neurophys. 104, 3691 (2010)CrossRefGoogle Scholar
  54. 54.
    K.J. Friston, Neuroimage 5, 164 (1997)CrossRefGoogle Scholar
  55. 55.
    M.I. Rabinovich, P. Varona, Front. Comput. Neurosci. 5, 24 (2011)CrossRefGoogle Scholar
  56. 56.
    M.I. Rabinovich, V.S. Afraimovich, C. Bick, P. Varona, Phys. Life Rev. 9, 51 (2012)ADSCrossRefGoogle Scholar
  57. 57.
    S.J. Kiebel, K. von Kriegstein, J. Daunizeau, K.J. Friston, PLoS Comput. Biol. 5, e1000464 (2009)MathSciNetCrossRefGoogle Scholar
  58. 58.
    P.G. Mehta, IEEE Trans. Automatic Contr. 55, 1585 (2010)CrossRefGoogle Scholar
  59. 59.
    S. Rahav, S. Mukamel, Phys. Rev. E 81, 031116 (2010)ADSCrossRefGoogle Scholar
  60. 60.
    R. Haslinger, K.L. Klinkner, C.R. Shalizi, Neural Comput. 22, 121 (2010)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • D. Arroyo
    • 1
  • P. Chamorro
    • 1
  • J.M. Amigó
    • 2
  • F.B. Rodríguez
    • 1
  • P. Varona
    • 1
  1. 1.Grupo de Neurocomputación Biológica, Escuela Politécnica Superior, Universidad Autónoma de MadridMadridSpain
  2. 2.Centro de Investigación Operativa, Universidad Miguel HernándezElcheSpain

Personalised recommendations