Abstract
The duality between values and orderings is a powerful tool to discuss relationships between various information-theoretic measures and their permutation analogues for discrete-time finite-alphabet stationary stochastic processes (SSPs). Applying it to output processes of hidden Markov models with ergodic internal processes, we have shown in our previous work that the excess entropy and the transfer entropy rate coincide with their permutation analogues. In this paper, we discuss two permutation characterizations of the two measures for general ergodic SSPs not necessarily having the Markov property assumed in our previous work. In the first approach, we show that the excess entropy and the transfer entropy rate of an ergodic SSP can be obtained as the limits of permutation analogues of them for the N-th order approximation by hidden Markov models, respectively. In the second approach, we employ the modified permutation partition of the set of words which considers equalities of symbols in addition to permutations of words. We show that the excess entropy and the transfer entropy rate of an ergodic SSP are equal to their modified permutation analogues, respectively.
This is a preview of subscription content, access via your institution.
References
C. Bandt, B. Pompe, Phys. Rev. Lett. 88, 174102 (2002)
J.M. Amigó, Permutation Complexity in Dynamical Systems (Springer-Verlag Berlin Heidelberg, 2010)
J.M. Amigó, M.B. Kennel, L. Kocarev, Physica D 210, 77 (2005)
J.M. Amigó, M.B. Kennel, Physica D 231, 137 (2007)
J.M. Amigó, Physica D 241, 789 (2012)
C. Bandt, G. Keller, B. Pompe, Nonlinearity 15, 1595 (2002)
K. Keller, M. Sinn, Physica D 239, 997 (2010)
K. Keller, A.M. Unakafov, V.A. Unakafova, Physica D 241, 1477 (2012)
T. Haruna, K. Nakajima, Physica D 240, 1370 (2011)
J.P. Crutchfield, D.P. Feldman, Chaos 15, 25 (2003)
T. Haruna, K. Nakajima, Int. J. Comput. Ant. Sys. (in press)
T. Schreiber, Phys. Rev. Lett. 85, 461 (2000)
P.O. Amblard, O.J.J. Michel, J. Comput. Neurosci. 30, 7 (2011)
T. Haruna, K. Nakajima [arXiv:1112.2493]
T. Haruna, K. Nakajima [arXiv:1204.1821]
C. Bian, C. Qin, Q.D.Y. Ma, Q. Shen, Phys. Rev. E 85, 021906 (2012)
M.C. Ruiz, A. Guillamón, A. Gabaldón, Entropy 14, 74 (2012)
X. Sun, Y. Zou, V. Nikiforova, V. Kurths, D. Walther, BMC Biofinformatics 11, 607 (2010)
R.B. Ash, Information Theory (Interscience Publishers, 1965)
P. Billingsley, Convergence of Probability Measures, Second Edition (John Wiley & Sons, Inc., 1999)
A. Kehagias, Ph.D. thesis, Brown University, 1992
D.R. Upper, Ph.D. thesis, University of California, Berkeley, 1997
P. Walters, An Introduction to Ergodic Theory (Springer-Verlag, New York, 1982)
W. Löhr, Ph.D. thesis, Max-Planck-Institute for Mathematics in the Sciences, Leipzig, 2010
T.M. Cover, J.A. Thomas, Elements of Information Theory (John Wiley & Sons, Inc., 1991)
D.V. Arnold, Complex Systems 10, 143 (1996)
W. Bialek, I. Nemenman, N. Tishby, Neural Computation 13, 2409 (2001)
D.P. Feldman, C.S. McTague, J.P. Crutchfield, Chaos 18, 043106 (2008)
P. Grassberger, Int. J. Theor. Phys. 25, 907 (1986)
W. Li, Complex Systems 5, 381 (1991)
R. Shaw, The Dripping Faucet as a Model Chaotic System (Aerial Press, Santa Cruz, California, 1984)
R.E. Knop, J. Combi. Theor. A 15, 338 (1973)
R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics, Second Edition (Addison-Wesley Publishing Company, Inc., 1994)
M. Staniek, K. Lehnertz, Phys. Rev. Lett. 100, 158101 (2008)
D. Kugiumtzis, J. Nonlin. Sys. Appl. 3, 73 (2012)
R. Mullin, G.C. Rota, in Graph Theory and its Applications (Academic Press, 1970), p. 167
S. Roman, G.C. Rota, Adv. Math. 27, 95 (1978)
D. Senato, A. Venezia, Comput. Math. Appl. 41, 1109 (2001)
A. Joyal, Adv. Math. 42, 1 (1981)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Haruna, T., Nakajima, K. Permutation approach to finite-alphabet stationary stochastic processes based on the duality between values and orderings. Eur. Phys. J. Spec. Top. 222, 383–399 (2013). https://doi.org/10.1140/epjst/e2013-01848-5
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1140/epjst/e2013-01848-5
Keywords
- Entropy
- Hide Markov Model
- European Physical Journal Special Topic
- Output Process
- Symbolic Dynamics