Instability of Marangoni flow in the presence of an insoluble surfactant. Experiments

Regular Article

Abstract

The stability and structure of solutocapillary Marangoni flow initiated by a localized concentration source in the presence of an adsorbed layer of insoluble surfactant is investigated experimentally. It has been established that the main axisymmetric flow becomes unstable with respect to azimuthally periodic disturbances which leads to the appearance of the surface flow with a multi-vortex structure. The structure of the secondary flow is investigated depending on the intensity of the main flow and on the surface density of the surfactant. It has been shown that the azimuthal wave number increases with the growth of the Marangoni number and decreases with the surface density of the surfactant. A threshold value of the surface density of the surfactant, at which the Marangoni flow does not occur, has been defined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.F. Pshenichnikov, S.S. Yatcenko, in Uchonie Zapiski Permskogo Universiteta (Proceedings of Perm State University, USSR) 316, 175 (1974)Google Scholar
  2. 2.
    J. Priede, et al., Phys. Fluids 11, 3331 (1999)ADSCrossRefMATHGoogle Scholar
  3. 3.
    P. Nagy, G. Neitzel, Phys. Fluids 21, 112106 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Yu.K. Bratukhin, L.N. Maurin, Prikl. Mat. Mekh. 31, 577 (1967)Google Scholar
  5. 5.
    Yu.K. Bratukhin, L.N. Maurin, J. Appl. Math. Mech. 31, 577 (1967)CrossRefGoogle Scholar
  6. 6.
    D. Schwabe, A.I. Mizev, Eur. Phys. J. Special Topics 192, 13 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    LindeH., FrieseP., Z. Phys. Chem. (Leipzig) 247, 225 (1971) (in German)Google Scholar
  8. 8.
    A. Mizev, Phys. Fluids 17, 122107 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    A. Frumkin, V.G. Levich, Z. Fizicheskoi Khimii 21, 1183 (1947) (in Russian)Google Scholar
  10. 10.
    M. Krzan, K. Malysa, Coll. Surf. A 207, 279 (2002)CrossRefGoogle Scholar
  11. 11.
    G. Loglio, et al., Il Nuovo Cimento 12, 289 (1989)ADSCrossRefGoogle Scholar
  12. 12.
    S. Takagi, et al., Fliud Dyn. Res. 41, 065003 (2009)CrossRefGoogle Scholar
  13. 13.
    R. Griffith, Chem. Eng. Sci. 17, 1057 (1962)CrossRefGoogle Scholar
  14. 14.
    R. Maceiras, R. Santana, S. Alves, Chem. Eng. Sci. 62, 6747 (2007)CrossRefGoogle Scholar
  15. 15.
    S. Takagi, Phil. Trans. R. Soc. A 366, 2117 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    J. Harper, Q J Mechanics Appl. Math. 27, 87 (1974)CrossRefMATHGoogle Scholar
  17. 17.
    R.V. Craster, O.K. Matar, Rev. Mod. Phys. 81, 1131 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    B.D. Edmonstone, O.K. Matar, R.V. Craster, J. Eng. Math. 50, 141 (2004)CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    A. Frenkel, D. Halpern, Phys. Fluids 14, L45 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    M.G. Blyth, C.J. Pozrikidis, Fluid Mech. 521, 241 (2004)ADSCrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    O.I. Karpilova, G.M. Sisoev, V.Ya. Shkadov, Fluid Dyn. 36, 880 (2001)CrossRefMATHGoogle Scholar
  22. 22.
    E.A. Ryabitskii, Fluid Dyn. 28, 3 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    E.A. Ryabitskii, Fluid Dyn. 31, 1 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    J. Berg, A. Acrivos, Chem. Eng. Sci. 20, 737 (1965)CrossRefGoogle Scholar
  25. 25.
    A.A. Nepomnyashchii, I.B. Simanovskii, Fluid Dyn. 21, 169 (1986)ADSCrossRefGoogle Scholar
  26. 26.
    A. Mikishev, A. Nepomnyashchy, Microgravity Sci. Technol. 22, 415 (2010)CrossRefGoogle Scholar
  27. 27.
    A. Mizev, et al., Eur. Phys. J. Special Topics 192, 163 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    M. Wuenscher, A. Luedge, H. Riemann, J. Crystal Growth 318, 1039 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    M. Wuenscher (private communication)Google Scholar
  30. 30.
    E. Tillberg, T. Carlberg, J. Crystal Growth 99, 1265 (1990)ADSCrossRefGoogle Scholar
  31. 31.
    M. Levenstam, et al., J. Crystal Growth 104, 641 (1990)ADSCrossRefGoogle Scholar
  32. 32.
    L.E. Murr, Interfacial Phenomena in Metals and Alloys (Addison-Wesley Publishing Company, Reading MA, 1975), p. 390Google Scholar
  33. 33.
    G.J. Janz, Molten Salts Handbook (Academic press, New York, 1967), p. 358Google Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • A. Mizev
    • 1
  • A. Trofimenko
    • 1
  • D. Schwabe
    • 2
  • A. Viviani
    • 3
  1. 1.Institute of Continuous Media MechanicsPermRussia
  2. 2.1.Physikalisches Institut der Justus-Liebig-UniversitaetGiessenGermany
  3. 3.Dipartimento di Ingegneria Aerospaziale MeccanicaSeconda Universita di NapoliAversaItaly

Personalised recommendations