Marangoni instability of a liquid layer with insoluble surfactant under heat flux modulation

Regular Article

Abstract

We investigate the parametric excitation of Marangoni convection by a periodic flux modulation in a liquid layer with insoluble surfactant absorbed on the nondeformable free surface. The stability analysis of the convective system is performed for arbitrary wave numbers of the disturbances. An interesting feature of the onset of convection is the existence of bifurcating neutral curves with double minima, one of which corresponds to a quasi-periodic solution, and the other one corresponds to a subharmonic solution. The evolution of the subharmonic instability region depending on the amplitude of the external heat flux modulation and the frequency of the modulation is studied. The quasi-periodic neutral curve is close to the oscillatory neutral curve of the nonmodulated problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Venezian, J. Fluid Mech. 35, 243 (1969)ADSCrossRefMATHGoogle Scholar
  2. 2.
    G.Z. Gershuni, E.M. Zhukhovitskii, I.S. Iourkov, J. Appl. Math. Mech. 34, 442 (1970)CrossRefMATHGoogle Scholar
  3. 3.
    G.Z. Gershuni, A.A. Nepomnyashchy, M.G. Velarde, Phys. Fluids A 4, 2394 (1992)MathSciNetADSCrossRefMATHGoogle Scholar
  4. 4.
    A.C. Or, R.E. Kelly, J. Fluid Mech. 456, 161 (2002)MathSciNetADSCrossRefMATHGoogle Scholar
  5. 5.
    B.L. Smorodin, A.B. Mikishev, A.A. Nepomnyashchy, B.I. Myznikova, Phys. Fluids 21, 062102 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    H.J. Palmer, S.H. Berg, J. Fluid Mech. 51, 385 (1972)ADSCrossRefMATHGoogle Scholar
  7. 7.
    R.V. Craster, O.K. Matar, Rev. Modern Phys. 81, 1131 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    A.B. Mikishev, A.A. Nepomnyashchy, Microgravity Sci. Technol. 22, 415 (2010)CrossRefGoogle Scholar
  9. 9.
    V.G. Levich, Physicochemical Hydrodynamics (Prentice Hall, Englewood Cliffs, N.J., 1962)Google Scholar
  10. 10.
    A. Podolny, A. Oron, A. Nepomnyashchy, Phys. Fluids 17, 104104 (2005)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    A.B. Mikishev, A.A. Nepomnyashchy, J. Adhes. Sci. Technol. 25, 1411 (2011)CrossRefGoogle Scholar
  12. 12.
    G. Terrones, C.F. Chen, J. Fluid Mech. 255, 301 (1993)MathSciNetADSCrossRefMATHGoogle Scholar
  13. 13.
    C.D. Eggleton, Y.P. Pawar, K.J. Stebe, J. Fluid Mech. 385, 79 (1999)ADSCrossRefMATHGoogle Scholar
  14. 14.
    I.S. Fayzrakhmanova, S.V. Shklyaev, A.A. Nepomnyashchy, Phys. Fluids 22, 104101 (2010)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Physics DepartmentSam Houston State UniversityHuntsvilleUSA
  2. 2.School of Arts and SciencesStrayer University — KatyHoustonUSA
  3. 3.Department of MathematicsTechnion — Israel Institute of TechnologyHaifaIsrael

Personalised recommendations