Bénard-Marangoni instability in a viscoelastic ferrofluid

  • David Laroze
  • Javier Martinez-Mardones
  • Harald Pleiner
Regular Article

Abstract

In this paper we report theoretical and numerical results on convection of a magnetic fluid in a viscoelastic carrier liquid. The viscoelastic properties are given by the Oldroyd model. We impose the lower interface to be rigid, whereas the upper one is free and is assumed to be non-deformable and flat. Also, at the upper interface the surface tension is taken to vary linearly with the temperature. Using a spectral method we calculate numerically the convective thresholds for both stationary and oscillatory bifurcations. The effect of the viscoelasticity and the Kelvin force on the instability thresholds are emphasized.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.E. Rosensweig, Ferrohydrodynamics (Cambridge University Press, Cambridge, 1985)Google Scholar
  2. 2.
    S. Odenbach, Ferrofluids: Magnetically Controllable Fluids and Their Applications (Springer, Berlin, 2003)Google Scholar
  3. 3.
    S. Odenbach (ed.), Colloidal Magnetic Fluids: Basics, Development and Application of Ferrofluids (Springer, Berlin, 2009)Google Scholar
  4. 4.
    J.L. Neuringer, R.E. Rosensweig, Phys. Fluids 7, 1927 (1964)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    B.A. Finlayson, J. Fluid Mech. 40, 753 (1970)ADSCrossRefMATHGoogle Scholar
  6. 6.
    A. Ryskin, H. Pleiner, Phys. Rev. E 69, 046301 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    P.J. Stiles, M. Kagan, J. Coll. Int. Sci. 134, 435 (1990)CrossRefGoogle Scholar
  8. 8.
    P.N. Kaloni, J.X. Lou, Phys. Rev. E 71, 066311 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    D. Laroze, J. Martinez-Mardones, J. Bragard, P. Vargas, Phys. A 371, 46 (2006)CrossRefGoogle Scholar
  10. 10.
    D. Laroze, J. Martinez-Mardones, L.M. Perez, Y. Rameshwar, Int. J. Bifur. Chaos 19, 2755 (2009)CrossRefMATHGoogle Scholar
  11. 11.
    J. Singh, R. Bajaj, Fluid Dyn. Res. 43, 025502 (2011)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Sunil S. Poonam, M. Amit, Trans. Porous Med. 88, 421 (2011)CrossRefGoogle Scholar
  13. 13.
    D.D. Joseph, Fluid Dynamics of Viscoelastic Liquids (Springer, New York, 1990)Google Scholar
  14. 14.
    H.M. Park, H.S. Lee, J. Non-Newtonian Fluid Mech. 66 1 (1996), and reference thereinCrossRefGoogle Scholar
  15. 15.
    P.N. Kaloni, J.X. Lou, J. Non-Newtonian Fluid Mech. 103, 167 (2002)CrossRefMATHGoogle Scholar
  16. 16.
    D. Laroze, J. Martinez-Mardones, AIP Conf. Proc. 913, 9 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    D. Laroze, J. Martinez-Mardones, L.M. Pérez, R.G. Rojas, J. Magn. Magn. Mater. 322, 3576 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    D. Laroze, L.M. Pérez, J. Bragard, E.G. Cordaro, J. Martinez-Mardones, Magnetohydrodynamics 47, 159 (2011)Google Scholar
  19. 19.
    L.M. Pérez, J. Bragard, D. Laroze, J. Martinez-Mardones, H. Pleiner, J. Magn. Magn. Mater. 323, 691 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    J. Weilepp, H.R. Brand, J. Phys. II (France) 6, 419 (1996)CrossRefGoogle Scholar
  21. 21.
    M. Hennenberg, B. Weyssow, S. Slavtchev, J.C. Legros, Eur. Phys. J. Appl. Phys. 16, 217 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    G. Lebon, A. Cloot, J. Non-Newtonian Fluid Mech. 28, 61 (1988)CrossRefMATHGoogle Scholar
  23. 23.
    P. Parmentier, G. Lebon, V. Regnier, J. Non-Newtonian Fluid Mech. 89, 63 (2000), and reference thereinCrossRefMATHGoogle Scholar
  24. 24.
    M. Hennenberg, B. Weyssow, S. Slavtchev, V. Alexandrov, T. Desaive, J. Magn. Magn. Mater. 289, 268 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    M. Hennenberg, B. Weyssow, S. Slavtchev, B. Scheid, Fluid Dyn. Mat. Process. 1, 101 (2007)Google Scholar
  26. 26.
    M. Hennenberg, S. Slavtchev, B. Weyssow, Inter. Trans. Phenom.: Ann. N.Y. Acad. Sci. 1161, 361 (2009)ADSCrossRefMATHGoogle Scholar
  27. 27.
    C.E. Nanjundappa, I.S. Shivakumara, R. Arunkumar, J. Magn. Magn. Mater. 322, 2256 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    C.E. Nanjundappa, I.S. Shivakumara, R. Arunkumar, Microgravity Sci. Technol. 23, 29 (2011)CrossRefGoogle Scholar
  29. 29.
    S. Bohlius, H. Pleiner, H.R. Brand, Phys. Fluids 19, 094103 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    P. Parmentier, Etude thédorique des instabilités capillaires at gravifiques dans les fluides viscoélastiques (Ph.D. thesis), Université de Liège, 1997Google Scholar
  31. 31.
    H. Pleiner, M. Liu, H.R. Brand, Rheologica Acta. 43, 502 (2004)CrossRefGoogle Scholar
  32. 32.
    P. Kolodner, J. Non-Newtonian Fluid Mech. 75, 167 (1998)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    T.T. Perkins, D.E. Smith, S. Chu, Science 276, 2016 (1997)CrossRefGoogle Scholar
  34. 34.
    S.R. Quake, H. Babcock, S. Chu, Nature 388, 151 (1997)ADSCrossRefGoogle Scholar
  35. 35.
    H. Babcock, D.E. Smith, J.S. Hur, E.S.G. Shaqfeh, S. Chu, Phys. Rev. Lett. 85, 2018 (2000)ADSCrossRefGoogle Scholar
  36. 36.
    D.A. Nield, J. Fluid Mech. 19, 341 (1964)MathSciNetADSCrossRefMATHGoogle Scholar
  37. 37.
    L.N. Trefethen, Spectral Methods in Matlab (SIAM, Philadelphia, 2000)Google Scholar
  38. 38.
    D. Laroze, J. Martinez-Mardones, J. Bragard, Eur. Phys. J. Special Topics 146, 291 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    P.C. Dauby, P. Pannentier, G. Lebon, M. Gnnel, J. Phys.: Condens. Matter 5, 4343 (1993)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • David Laroze
    • 1
    • 2
  • Javier Martinez-Mardones
    • 3
  • Harald Pleiner
    • 1
  1. 1.Max-Planck-Institute for Polymer ResearchMainzGermany
  2. 2.Instituto de Alta InvestigaciónUniversidad de TarapacáAricaChile
  3. 3.Instituto de FísicaP. Universidad Católica de ValparaisoValparaisoChile

Personalised recommendations