Skip to main content
Log in

Faddeev random phase approximation applied to molecules

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The Faddeev Random Phase Approximation (FRPA) is a Green’s function method which couples collective degrees of freedom to the single particle motion by resumming an infinite number of Feynman diagrams. The Faddeev technique is applied to describe the two-particle-one-hole (2p1h) and two-hole-one-particle (2h1p) Green’s function in terms of non-interacting propagators and kernels for the particle-particle (pp) and particle-hole (ph) interactions. This results in an equal treatment of the intermediary pp and ph channels. In FRPA both the pp and ph phonons are calculated on the random phase approximation (RPA) level. In this work the equations that lead to the FRPA eigenvalue problem are derived. The method is then applied to atoms, small molecules and the Hubbard model, for which the ground state energy and the ionization energies are calculated. Special attention is directed to the RPA instability in the dissociation limit of diatomic molecules and in the Hubbard model. Several solutions are proposed to overcome this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.K.Adhikari, W.Glöckle, Phys. Rev. C 19, 616 (1979)

    Article  ADS  Google Scholar 

  2. F.Aryasetiawan, O.Gunnarsson, Reports Progr. Phys. 61, 237 (1998)

    Article  ADS  Google Scholar 

  3. K.Arita, H.Horie, Nucl. Phys. A 173, 97 (1971)

    Article  ADS  Google Scholar 

  4. X.Blase, C.Attaccalite, V.Olevano, Phys. Rev. B 83, 115103 (2011)

    Article  ADS  Google Scholar 

  5. C.Barbieri, Self-Consistent Green’s Function Study of Low-Energy Correlations in 16O. Ph.D. dissertation, Washington University in Saint Louis, Aug 2002

  6. G.Baym, Phys. Rev. 127, 1391 (1962)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. C.Barbieri, W.H.Dickhoff, Phys. Rev. C 65, 064313 (2002)

    Article  ADS  Google Scholar 

  8. C.Barbieri, W.H.Dickhoff, Phys. Rev. C 68, 014311 (2003)

    Article  ADS  Google Scholar 

  9. G.E.Brown, J.A.Evans, D.J.Thouless, Nucl. Phys. 24, 1 (1961)

    Article  MathSciNet  Google Scholar 

  10. C.Barbieri, M.Hjorth-Jensen, Phys. Rev. C 79, 064313 (2009)

    Article  ADS  Google Scholar 

  11. G.Baym, L.P.Kadanoff, Phys. Rev. 124, 287 (1961)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. D.Bohm, D.Pines, Phys. Rev. 82, 625 (1951)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. D.Bohm, D.Pines, Phys. Rev. 92, 609 (1953)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. The basis set exchange. https://bse.pnl.gov/bse/portal

  15. N.E.Bickers, D.J.Scalapino, S.R.White, Phys. Rev. Lett. 62, 961 (1989)

    Article  ADS  Google Scholar 

  16. C.Barbieri, D.Van Neck, W.H.Dickhoff, Phys. Rev. A 76, 052503 (2007)

    Article  ADS  Google Scholar 

  17. C.Barbieri, D.Van Neck, M.Degroote, Phys. Rev. A 85, 012501 (2012)

    Article  ADS  Google Scholar 

  18. NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101 Release 15a, http://cccbdb.nist.gov/, April 2010

  19. S.J.Chakravorty, E.R.Davidson, J. Phys. Chem. 100, 6167 (1996)

    Article  Google Scholar 

  20. L.S.Cederbaum, W.Domcke, J.Schirmer, Phys. Rev. A 22, 206 (1980)

    Article  ADS  Google Scholar 

  21. L.S.Cederbaum, W.Domcke, J.Schirmer, W.von Niessen, Correlation Effects in the Ionization of Molecules: Breakdown of the Molecular Orbital Picture (John Wiley & Sons, Inc., 2007), p. 115

  22. D.M.Ceperley, L.Mitas, Quantum Monte Carlo Methods in Chemistry, edited by Prigogine I., Rice S.A., New Methods in Computational Quantum Mechanics Advances in Chemical Physics, vol. XCIII (1996)

  23. D.M.Ceperley, Introduction to Quantum Monte Carlo Methods Applied to the Electron Gas, edited by Giuliani G.F. and Vignale G., Proceedings of the International School of Physics Enrico Fermi, Course CLVII (IOS Press, Amsterdam, 2004), p. 3

  24. F.Caruso, P.Rinke, X.Ren, M.Scheffler, A.Rubio, Phys. Rev. B 86, 081102 (2012)

    Article  ADS  Google Scholar 

  25. D.Danovich, Wiley Interdisciplinary Reviews: Computational Molecular Science 1, 377 (2011)

    Google Scholar 

  26. NIST Standard Reference Database. NIST atomic spectra database,http://physics.nist.gov/PhysRefData/ASD/in-dex.html

  27. C.Dal Cappello, Z.Rezkallah, S.Houamer, I.Charpentier, P.A.Hervieux, M.F.Ruiz-Lopez, R.Dey, A.C.Roy, Phys. Rev. A 84, 032711 (2011)

    Article  ADS  Google Scholar 

  28. E.R.Davidson, S.A.Hagstrom, S.J.Chakravorty, V.M.Umar, C.F.Fischer, Phys. Rev. A 44, 7071 (1991)

    Article  ADS  Google Scholar 

  29. W.H.Dickhoff, D.V.Neck, Many-Body Theory Exposed! Propagator Description of Quantum Mechanics in Many-Body Systems (World Scientific Publishing Company, 2005)

  30. M.Degroote, D.V.Neck, C.Barbieri, Comput. Phys. Comm. 182, 1995 (2011) Computer Physics Communications Special Edition for Conference on Computational Physics Trondheim, Norway, June 23–26, 2010

  31. Y.Dewulf, D.V.Neck, L.V.Daele, M.Waroquier, Phys. Lett. B 396, 7 (1997)

    Article  ADS  Google Scholar 

  32. J.Dukelsky, P.Schuck, Nucl. Phys. A 512, 466 (1990)

    Article  ADS  Google Scholar 

  33. M.Deleuze, M.K.Scheller, L.S.Cederbaum, J. Chem. Phys. 103, 3578 (1995)

    Article  ADS  Google Scholar 

  34. M.Degroote, D.Van Neck, C.Barbieri, Phys. Rev. A 83, 042517 (2011)

    Article  ADS  Google Scholar 

  35. S.Ethofer, P.Schuck, Phys. Lett. A 29, 223 (1969)

    Article  ADS  Google Scholar 

  36. S.Ethofer, P.Schuck, Z. Phys. A Hadrons Nucl. 228, 264 (1969)

    MathSciNet  Google Scholar 

  37. L.D.Faddeev, Sov. Phys. JETP 12, 1014 (1961)

    MathSciNet  Google Scholar 

  38. A.L.Fetter, J.D.Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, San Francisco, 1971)

  39. V.Galitskii, Sov. Phys.–JETP 7, 1958

  40. W.Glckle, The quantum mechanical few-body problem (Springer-Verlag, 1983)

  41. M.Garca-Revilla, E.Francisco, A.Costales, A.M.Pends, J. Phys. Chem. A 116, 1237 (2012)

    Article  Google Scholar 

  42. C.Httig, in Response Theory and Molecular Properties (A Tribute to Jan Linderberg and Poul Jrgensen), edited by H.J. Jensen, vol. 50 of Advances in Quantum Chemistry (Academic Press, 2005), p. 37

  43. L.Hedin, Phys. Rev. 139, A796 (1965)

    Article  ADS  Google Scholar 

  44. T.Helgaker, T.A.Ruden, P.Jrgensen, J.Olsen, W.Klopper, J. Phys. Org. Chem. 17, 913 (2004)

    Article  Google Scholar 

  45. J.Hubbard, Proceedings of the Royal Society of London, Series A, Math. Phys. Sci. 276, 238 (1963)

    Article  Google Scholar 

  46. M.Jema, P.Schuck, Phys. At. Nucl. 74, 1139 (2011)

    Article  Google Scholar 

  47. M.Jemaï, P.Schuck, J.Dukelsky, R.Bennaceur, Phys. Rev. B 71, 085115 (2005)

    Article  ADS  Google Scholar 

  48. San-HuangKe, Phys. Rev. B 84, 205415 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  49. K.Kimura, S.Katsumata, Y.Achiba, T.Yamazaki, S.Iwata, Handbook of HeI Photoelectron Spectra of Fundamental Organic Molecules (Halsted, New York, 1981)

  50. M.I.Katsnelson, A.I.Lichtenstein, Eur. Phys. J. B 30, 9 (2002)

    Article  ADS  Google Scholar 

  51. W.Kutzelnigg, Int. J. Quantum Chem. 109, 3858 (2009)

    Article  ADS  Google Scholar 

  52. J.Linderberg, Y.Öhrn, Propagators in Quantum Chemistry, 2nd ed. (2005)

  53. G.Martin, http://www.weizmann.ac.il/oc/martin/atoms.shtml

  54. R.D.Mattuck, Physics, A Guide to Feynman Diagrams in the Many-Body Problem, 2nd ed. (Dover Publications, 1992)

  55. I.E.McCarthy, R.Pascual, P.Storer, E.Weigold, Phys. Rev. A 40, 3041 (1989)

    Article  ADS  Google Scholar 

  56. H.Müther, L.D.Skouras, Phys. Lett. B 306, 201 (1993)

    Article  ADS  Google Scholar 

  57. H.Müther, P.U.Sauer, Computational Nuclear Physics 2: Nuclear Reactions, chapter The G-Matrix in Finite Nuclei (Springer, Berlin, 1993), p. 30

  58. H.Müther, T.Taigel, T.T.S.Kuo, Nucl. Phys. A 482, 601 (1988)

    Article  ADS  Google Scholar 

  59. N.Nakanishi, Progr. Theor. Phys. Suppl. 43, 1 (1969)

    Article  ADS  MATH  Google Scholar 

  60. P.Navrátil, B.R.Barrett, W.Glöckle, Phys. Rev. C 59, 611 (1999)

    Article  ADS  Google Scholar 

  61. M.Nooijen, J.G.Snijders, Int. J. Quant. Chem. 44, 55 1992

    Article  Google Scholar 

  62. M.Nooijen, J.G.Snijders, Int. J. Quant. Chem. 48, 15 (1993)

    Article  Google Scholar 

  63. D.Van Neck, M.Waroquier, V.Van der Sluys, K.Heyde, Nucl. Phys. A 563, 1 (1993)

    Article  ADS  Google Scholar 

  64. D.Van Neck, M.Waroquier, J.Ryckebusch, Nucl. Phys. A 530, 347 (1991)

    Article  ADS  Google Scholar 

  65. G.Onida, L.Reining, A.Rubio, Rev. Mod. Phys. 74, 601 (2002)

    Article  ADS  Google Scholar 

  66. J.V.Ortiz, J. Chem. Phys. 108, 1008 (1998)

    Article  ADS  Google Scholar 

  67. D.Pines, D.Bohm, Phys. Rev. 85, 338 (1952)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  68. M.Pernpointner, J. Chem. Phys. 121, 8782 (2004)

    Article  ADS  Google Scholar 

  69. D.Pines, Elementary Excitations In Solids: Lectures On Phonons, Electrons, And Plasmons (Basic Books, 1971)

  70. W.H.Press, S.A.Teukolsky, W.T.Vetterling, B.P.Flannery, Numerical Recipes 3rd Edition: The Art of Scientific Computing (Cambridge University Press, 2007)

  71. M.P.von Friesen, C.Verdozzi, C.-O.Almbladh, Phys. Rev. B 82, 155108 (2010)

    Article  ADS  Google Scholar 

  72. R.G.Parr, W.Yang, Density functional theory of atoms and molecules (Oxford University Press, New York, 1989)

  73. G.A.Rijsdijk, K.Allaart, W.H.Dickhoff, Nucl. Phys. A 550, 159 (1992)

    Article  ADS  Google Scholar 

  74. P.Romaniello, F.Bechstedt, L.Reining, Phys. Rev. B 85, 155131 (2012)

    Article  ADS  Google Scholar 

  75. G.A.Rijsdijk, W.J.W.Geurts, K.Allaart, W.H.Dickhoff, Phys. Rev. C 53, 201 (1996)

    Article  ADS  Google Scholar 

  76. G.A.Rijsdijk, W.J.W.Geurts, M.G.E.Brand, K.Allaart, W.H.Dickhoff, Phys. Rev. C 48, 1752 (1993)

    Article  ADS  Google Scholar 

  77. P.Romaniello, S.Guyot, L.Reining, J. Chem. Phys. 131, 154111 (2009)

    Article  ADS  Google Scholar 

  78. C.Rostgaard, K.W.Jacobsen, K.S.Thygesen, Phys. Rev. B 81, 085103 (2010)

    Article  ADS  Google Scholar 

  79. D.J.Rowe, Rev. Mod. Phys. 40, 153 (1968)

    Article  ADS  Google Scholar 

  80. P.Ring, P.Schuck, The nuclear many-body problem (Springer-Verlag, New York, 1980)

  81. M.Springer, F.Aryasetiawan, K.Karlsson, Phys. Rev. Lett. 80, 2389 (1998)

    Article  ADS  Google Scholar 

  82. E.E.Salpeter, H.A.Bethem, Phys. Rev. 84, 1232 (1951)

    Article  ADS  MATH  Google Scholar 

  83. J.Schirmer, L.S.Cederbaum, J. Phys. B: At. Mol. Phys. 11, 1889 (1978)

    Article  ADS  Google Scholar 

  84. A.Schindlmayr, Self-consistency and vertex corrections beyond the GW approximation [eprint arXiv:cond-mat/0206510], 2002

  85. J.Schirmer, L.S.Cederbaum, O.Walter, Phys. Rev. A 28, 1237 (1983)

    Article  ADS  Google Scholar 

  86. A.Stan, N.E.Dahlen, R.van Leeuwen, EPL (Europhys. Lett.) 76, 298 (2006)

    Article  ADS  Google Scholar 

  87. A.Stan, N.E.Dahlen, R.van Leeuwen, J. Chem. Phys. 130, 114105 (2009)

    Article  ADS  Google Scholar 

  88. P.Schuck, S.Ethofer, Nucl. Phys. A 212, 269 (1973)

    Article  ADS  Google Scholar 

  89. A.Schindlmayr, R.W.Godby, Phys. Rev. Lett. 80, 1702 (1998)

    Article  ADS  Google Scholar 

  90. G.E.Scuseria, T.M.Henderson, D.C.Sorensen, J. Chem. Phys. 129, 231101 (2008)

    Article  ADS  Google Scholar 

  91. D.Semkat, D.Kremp, M.Bonitz, Contrib. Plasma Phys. 42, 31 (2002)

    Article  ADS  Google Scholar 

  92. A.Szab, N.S.Ostlund, Modern Quantum Chemistry (Courier Dover Publications, 1989)

  93. S.Schäfer, P.Schuck, Phys. Rev. B 59, 1712 (1999)

    Article  ADS  Google Scholar 

  94. J.Schirmer, A.B.Trofimov, G.Stelter, J. Chem. Phys. 109, 4734 (1998)

    Article  ADS  Google Scholar 

  95. P.Schuck, F.Villars, P.Ring, Nucl. Phys. A 208, 302 (1973)

    Article  ADS  Google Scholar 

  96. F.S.M.Tsui, K.F.Freed, Chem. Phys. 5, 337 (1974)

    Article  ADS  Google Scholar 

  97. D.J.Thouless, Nucl. Phys. 22, 78 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  98. A.Thompson, X-ray data booklet, Lawrence Berkeley National Laboratory, Berkeley, CA, 2001

  99. A.B.Trofimov, J.Schirmer, J. Chem. Phys. 123, 144115 (2005)

    Article  ADS  Google Scholar 

  100. B.Verstichel, Variational determination of the two-particle density matrix as a quantum many-body technique. Ph.D. dissertation, Ghent University, 2012

  101. W.von Niessen, J.Schirmer, L.S.Cederbaum, Comput. Phys. Reports 1, 57 (1984)

    Article  ADS  Google Scholar 

  102. J.Čížek, J.Paldus, J. Chem. Phys. 47, 3976 (1967)

    Article  ADS  Google Scholar 

  103. B.Verstichel, H.van Aggelen, D.Van Neck, P.Bultinck, S.De Baerdemacker, Comput. Phys. Comm. 182, 1235 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  104. J.Winter, Nucl. Phys. A 194, 535 (1972)

    Article  ADS  Google Scholar 

  105. R.B.Wiringa, Recent Developments in Nuclear Quantum Monte Carlo, edited by Danielewicz, P., Bulk Nuclear Properties, vol. 1128 of AIP Conference Proceedings, p. 1–10. Natl Superconduct Cyclot Lab; Argonne Natl Lab; Joint Inst Nucl Astrophys; Inst Nucl Theory, 2009. 5th Annual ANL/MSU/JINA/INT FRIB Thoery Workshop, Michigan State Univ. Natl. Superconduct Cyclotron Lab, East Lansing, MI, Nov. 19–22, 2008

  106. O.Walter, J.Schirmer, J. Phys. B: At. Mol. Phys. 14, 3805 (1981)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Degroote.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degroote, M. Faddeev random phase approximation applied to molecules. Eur. Phys. J. Spec. Top. 218, 1–70 (2013). https://doi.org/10.1140/epjst/e2013-01772-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-01772-8

Keywords

Navigation