Skip to main content
Log in

Two-dimensional short-range interacting attractive and repulsive Fermi gases at zero temperature

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We study a two-dimensional two-component Fermi gas with attractive or repulsive short-range interactions at zero temperature. We use Diffusion Monte Carlo with Fixed Node approximation in order to calculate the energy per particle and the opposite spin pair distribution functions. We show the relevance of beyond mean field effects and verify the consistency of our approach by using Tan’s Contact relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 80, 1215 (2008)

    Article  ADS  Google Scholar 

  2. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  3. K. Martiyanov, V. Makhalov, A. Turlapov, Phys. Rev. Lett. 105, 030404 (2010)

    Article  ADS  Google Scholar 

  4. A. Orel, et al., New J. Phys. 13, 113032 (2011)

    Article  ADS  Google Scholar 

  5. B. Fröhlich, et al., Phys. Rev. Lett. 106, 105301 (2011)

    Article  ADS  Google Scholar 

  6. M. Feld, et al., Nature 480, 75 (2011)

    Article  ADS  Google Scholar 

  7. A. Sommer, et al., Phys. Rev. Lett. 108, 045302 (2012)

    Article  ADS  Google Scholar 

  8. M. Koschorreck, et al., Nature 485, 619 (2012)

    Article  ADS  Google Scholar 

  9. K. Miyake, Prog. Theor. Phys. 69, 1794 (1983)

    Article  ADS  Google Scholar 

  10. M. Randeria, J.-M. Duan, L.-Y. Shieh, Phys. Rev. Lett. 62, 981 (1989)

    Article  ADS  Google Scholar 

  11. M. Randeria, J.-M. Duan, L.-Y. Shieh, Phys. Rev. B 41, 327 (1990)

    Article  ADS  Google Scholar 

  12. G. Bertaina, S. Giorgini, Phys. Rev. Lett. 106, 110403 (2011)

    Article  ADS  Google Scholar 

  13. M. Parish, Phys. Rev. A 83, 051603 (2011)

    Article  ADS  Google Scholar 

  14. S. Zöllner, G. Bruun, C. Pethick, Phys. Rev. A 83, 021603 (2011)

    Article  ADS  Google Scholar 

  15. M. Klawunn, A. Recati, Phys. Rev. A 84, 033607 (2011)

    Article  ADS  Google Scholar 

  16. R. Schmidt, et al., Phys. Rev. A 85, 021602 (2012)

    Article  ADS  Google Scholar 

  17. E. Vogt, et al., Phys. Rev. Lett. 108, 070404 (2012)

    Article  ADS  Google Scholar 

  18. J. Hofmann, Phys. Rev. Lett. 108, 185303 (2012)

    Article  ADS  Google Scholar 

  19. E. Taylor, M. Randeria, Phys. Rev. Lett. 109, 135301 (2012)

    Article  ADS  Google Scholar 

  20. B. Fröhlich, et al., Phys. Rev. Lett. 109, 130403 (2012)

    Article  ADS  Google Scholar 

  21. D.S. Petrov, M.A. Baranov, G.V. Shlyapnikov, Phys. Rev. A 67, 031601 (2003)

    Article  ADS  Google Scholar 

  22. D.S. Petrov, G.V. Shlyapnikov, Phys. Rev. A 64, 012706 (2001)

    Article  ADS  Google Scholar 

  23. A.J. Leggett, Modern Trends In The Theory Of Condensed Matter, Lecture Notes in Physics, vol. 115 (Springer-Verlag, Berlin, 1980), p. 13

  24. J.P. Bouchaud, A. Georges, C. Lhuillier, J. Phys. (Paris) 49, 553 (1988)

    Article  MathSciNet  Google Scholar 

  25. P.J. Reynolds, et al., J. Chem. Phys. 77, 5593 (1982)

    Article  ADS  Google Scholar 

  26. G.E. Astrakharchik, et al., Phys. Rev. Lett. 93, 200404 (2004)

    Article  ADS  Google Scholar 

  27. S.-Y. Chang, et al., Phys. Rev. A 70, 043602 (2004)

    Article  ADS  Google Scholar 

  28. G.E. Astrakharchik, et al., Phys. Rev. Lett. 95, 230405 (2005)

    Article  ADS  Google Scholar 

  29. S. Pilati, et al., Phys. Rev. Lett. 105, 030405 (2010)

    Article  ADS  Google Scholar 

  30. S.-Y. Chang, et al., Proc. Natl. Acad. Sci. 108, 51 (2011)

    Article  ADS  Google Scholar 

  31. D.M. Ceperley, Phys. Rev. B 18, 3126 (1978)

    Article  ADS  Google Scholar 

  32. D.M. Ceperley, B.J. Alder, Phys. Rev. B 36, 2092 (1987)

    Article  ADS  Google Scholar 

  33. P. Bloom, Phys. Rev. B 12, 125 (1975)

    Article  ADS  Google Scholar 

  34. J.R. Engelbrecht, M. Randeria, L. Zhang, Phys. Rev. B 45, 10135 (1992)

    Article  ADS  Google Scholar 

  35. J.R. Engelbrecht, M. Randeria, Phys. Rev. B 45, 12419 (1992)

    Article  ADS  Google Scholar 

  36. N. Drummond, et al., Phys. Rev. B 83, 195429 (2011)

    Article  ADS  Google Scholar 

  37. G.E. Astrakharchik, et al., Phys. Rev. A 79, 051602 (2009)

    Article  ADS  Google Scholar 

  38. C. Mora, Y. Castin, Phys. Rev. Lett. 102, 180404 (2009)

    Article  ADS  Google Scholar 

  39. S.R. Beane, Phys. Rev. A 82, 063610 (2010)

    Article  ADS  Google Scholar 

  40. S. Tan, Ann. Phys. 323, 2952 (2008)

    Article  ADS  MATH  Google Scholar 

  41. S. Tan, Ann. Phys. 323, 2971 (2008)

    Article  ADS  MATH  Google Scholar 

  42. F. Werner, Y. Castin, Phys. Rev. A 86, 013626 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Bertaina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertaina, G. Two-dimensional short-range interacting attractive and repulsive Fermi gases at zero temperature. Eur. Phys. J. Spec. Top. 217, 153–162 (2013). https://doi.org/10.1140/epjst/e2013-01763-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-01763-9

Keywords

Navigation