The European Physical Journal Special Topics

, Volume 214, Issue 1, pp 597–634

Linking science and arts: Intimate science, shared spaces and living experiments

  • J. Perelló
  • D. Murray-Rust
  • A. Nowak
  • S. R. Bishop
Regular Article

Abstract

We aim to move beyond the idea of art as a tool for communicating science, towards a truly interdisciplinary practice where art and public engagement are a fundamental part of the way that science is carried out as promoted by the FuturICT project. Artistic exploration can have a scientific impact when artists act as designers, catalyzers and coordinators of experiments, which scientists interpret and respond to. We propose the creation of a travelling show, consisting of a set of core exhibits and ‘living experiments’: interactive, evolving pieces which blend artistic experience and scientific research. We also propose the creation of a new production oriented, distributed, inter-institutional research centre, focused on developing parallel relations between artistic practice and diverse fields of science. All these initiatives will be aligned with different areas of the FuturICT project, using different aspects of the Living Earth Simulator, Planetary Nervous System, and Knowledge Accelerator to support the creation of rich, interactive, collaborative experiences and in close contact with the educational and participatory platforms of FuturICT.

Graphical abstract

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The Rocard Report, Science Education Now - A New Pedagogy for the Future of Europe (Office for Official Publications of the European Communities, 2007)Google Scholar
  2. 2.
    Masis Report, Challenging Futures of Science in Society – Emerging trends and cutting-edge issues (European Commission, 2009)Google Scholar
  3. 3.
    N1 FuturICT New Science and Technology to Manage Our Complex, Strongly Connected World, Dirk Helbing et al.Google Scholar
  4. 4.
    N 11 Socio-Inspired ICT, Alois Ferscha et al.Google Scholar
  5. 5.
    A.I. Miller, Insights of a Genius. Imagery and Creativity in Science and Art (MIT Press, London, 2000)Google Scholar
  6. 6.
    P. Ball, I’m going to try to be like an arts critic, but for science (The Guardian 2 December, 2011)Google Scholar
  7. 7.
    M. Kemp, Leonardo. Revised Edition (Oxford University Press, Oxford, 2011)Google Scholar
  8. 8.
    D. Edwards, The Lab: Creativity and Culture (Harvard University Press, Boston, 2010)Google Scholar
  9. 9.
    D. Dixon, H. Hawkins, M. Ingram, Nature 472, 417 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    N24-25 Policy Issues of Big Science, Janet Smart et al.Google Scholar
  11. 11.
    Ars Electronica, Origin: How it all begins (Hatje Cantz, Linz, 2011)Google Scholar
  12. 12.
    E. Shanken, Gemini Rising, Moon in Apollo: Attitudes on the Relationship Between Art and Technology in the US, 1966-71, Leonardo Electronic Almanac 6:12 (1999)Google Scholar
  13. 13.
    E. Shanken, Art and Electronic Media (Phaidon Press, London, 2009)Google Scholar
  14. 14.
    A.I. Miller, Einstein, Picasso. Space, Time and the Beauty that Causes Havoc (Basic Books, New York, 2001)Google Scholar
  15. 15.
    G. Holton, Leonardo 34, 127 (2001)MathSciNetCrossRefGoogle Scholar
  16. 16.
    R.R. Shearer, S.J. Gould, Science 286, 1093 (1999)CrossRefGoogle Scholar
  17. 17.
    R.R. Shearer, S.J. Gould, Science 287, Iss. 5450, 41 (2000)CrossRefGoogle Scholar
  18. 18.
    G. Parkinson, Surrealism, Art and Modern Science (Yale University Press, 2008)Google Scholar
  19. 19.
    B. Latour, Science 280, Iss. 5361, 208 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    H. Nowotny, P. Scott, M. Gibbons, Re-thinking science: knowledge and the public in an age of uncertainty (Polity, 2011)Google Scholar
  21. 21.
    G. Born, A. Barry, J. Cult. Econom. 3, 103 (2010)CrossRefGoogle Scholar
  22. 22.
    A. Barry, G. BornG. Weszkalnys, Logics of interdisciplinarity, Econom. Soc. 37, Iss. 1, 20 (2008)Google Scholar
  23. 23.
    N4-5 Democratising Big Data, Complexity Modelling and Collective Intelligence, Simon Buckingham Shum et al.Google Scholar
  24. 24.
    N14 Manifesto of Computational Social Science, Rosaria Conte et al.Google Scholar
  25. 25.
    J. Scott (ed.), Artists-in-Labs: Processes of Inquiry (Springer-Verlag, Wien, 2006)Google Scholar
  26. 26.
    J. Scott (ed.), Artists-in-Labs: Networking the Margins (Springer-Verlag, Wien, 2010)Google Scholar
  27. 27.
    Y. Yoshimura, F. Girardin, J.P. Carrascal, C. Ratti, J. Blat, New tools for studying visitor behaviors in museums: a case study at the Louvre(ENTER2012 eTourism Present and Future Services and Applications 2012, Helsingborg, Sweden)Google Scholar
  28. 28.
    N12 Challenges in Complex Systems Science, Maxi San Miguel et al.Google Scholar
  29. 29.
    N 7 Exploratory of Society L.E. Cederman et al.Google Scholar
  30. 30.
    C. Gracia-Lázaro, A. Ferrer, G. Ruiz, A. Tarancón, J.A. Cuesta, A. Sánchez, Y. Moreno, Proceedings of the National Academy of the USA 109, 12922 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    N15 A complex systems approach to constructing better models for managing financial markets and the economy, J. Doyne Farmer, et al.Google Scholar
  32. 32.
    N 8-19 A European Economic and Financial Exploratory, Silvano Cincotti (UNIGE) et al.Google Scholar
  33. 33.
    N20 Theoretical and Technological Building Block for an Innovation Accelerator, Frank van Harmelen et al.Google Scholar
  34. 34.
    N2-6 The Living Earth Simulator and the Exploratories, Donald Kossman et al.Google Scholar
  35. 35.
    N3 A Planetary Nervous System Jim Crowley et al.Google Scholar
  36. 36.
    N27 Accelerating Scientific Discovery by Posing Hilbert Problems, Dirk Helbing et al.Google Scholar
  37. 37.
    D. McCorquodale, D. Hebdige, D. Hollier, L. Saltzman, Krzysztof Wodiczko (Black Dog Publishing, London, 2010)Google Scholar
  38. 38.
    A. Wasilkowska, A. Nowak (eds.), Warsaw as Emergent Structure (Fundacja Bec Zmiana, Warsaw, 2009)Google Scholar
  39. 39.
    G. Ascione, C. Massip, J. Perelló (eds.), Cultures of Change. Social atoms and Electronic Lives (Actar-Birkhauser, Barcelona, 2009)Google Scholar
  40. 40.
    B. Gaver, Designing for Homo Ludens (I3 Magazine, 2002). Retrieved from: http://www.itu.dk/courses/MUEP/E2011/literature/gaver08.pdf
  41. 41.
    D. Murray-Rust, Musical Acts and Musical Agents: theory, implementation and practice, Ph.D. thesis, 2007Google Scholar
  42. 42.
    D. Murray-Rust, A. Smaill, Artificial Intell. 175, Iss 9-10, 1697 (2011)MathSciNetCrossRefGoogle Scholar
  43. 43.
    M. Edwards, Comm. ACM 54, Iss. 7, 58 (2011)CrossRefGoogle Scholar
  44. 44.
    G. Mazzola, G. Milmeister, Functors for Music: The Rubato Composer System, Proceedings of the ICMC (San Francisco: International Computer Music Association, 2006), p. 83Google Scholar
  45. 45.
    F. Pachet, The MusES system: An environment for experimenting with knowledge representation techniques in tonal harmony, Proc. 1st Brazilian Symp. Computer Music (Caxambu, Minas Gerais, Brazil, 1994), p. 195Google Scholar
  46. 46.
    E. Chew, A. Sawchuk, C. TanoueR. Zimmermann, Segmental Tempo Analysis of Performances in User-Centered Experiments in the Distributed Immersive Performance Project, Proceedings of the Sound and Music Computing Conference (Salerno, Italy, 2005)Google Scholar
  47. 47.
    G. Widmer, W. Goebl, J. New Music Res. 33, 203 (2004)CrossRefGoogle Scholar
  48. 48.
    C. Small, Musicking: a ritual in social space. On the sociology of music education (on the sociology of music education 1997), p. 1Google Scholar
  49. 49.
    D. Elliott, Int. J. Music Educ. 1, 3 (1995)CrossRefGoogle Scholar
  50. 50.
    I. Cross, Ann. New York Acad. Sci. 999, 106 (2003)ADSCrossRefGoogle Scholar
  51. 51.
    K.R. Coventry, T. Blackwell, Pragmatics in language and music, edited by M. Smith, A. Smaill, G.A. Wiggins, Music Education: An Artificial Intelligence Approach (Workshops in Computing, Springer, 1994), p. 123Google Scholar
  52. 52.
    J. Searle, Speech Acts (Cambridge University Press, 1969)Google Scholar
  53. 53.
    W. Somerville, Quarterly J. Royal Astrono. Soc. 13, 40 (1972)ADSGoogle Scholar
  54. 54.
    R. Whitaker, Amer. J. Phys. 69, 162 (2001)ADSCrossRefGoogle Scholar
  55. 55.
    C. Sommerer, L. Mignonneau, G. Stocker, Christa Sommerer and Laurent Mignonneau: Interactive Art Research (Springer Verlag, Vienna/New York, 2009)Google Scholar
  56. 56.
    J. Perelló (ed.), Christa Sommerer & Laurent Mignonneau. Living Systems (Actar-Birkhauser, Barcelona, 2011)Google Scholar
  57. 57.
    K. Börner, S. Penumarthy, Social Diffusion Patterns in Three-Dimensional Virtual Worlds, Inf. Visualiz. J. 2, 182 (2003)CrossRefGoogle Scholar
  58. 58.
    K. Börner, J. Maru, R. Goldstone, The Simultaneous Evolution of Author and Paper Networks, PNAS 101(Suppl 1), 5266 (2004)Google Scholar
  59. 59.
    M.A. Porter, Science 331, 676 (2011)ADSCrossRefGoogle Scholar
  60. 60.
    B. Shneiderman, Nature 468, 1037 (2010)ADSCrossRefGoogle Scholar
  61. 61.
    W.J. Rankin, Amer. Scien. 99, 254 (2011)MathSciNetCrossRefGoogle Scholar
  62. 62.
    D. Mosher, Data as Art: 10 Striking Science Maps (Wired Science, 8 March, 2011)Google Scholar
  63. 63.
    J. Markoff, Digging Deeper, Seeing Farther: Supercomputers Alter Science (New York Times, 25 April, 2011)Google Scholar
  64. 64.
    P. Ball, Nature 418, Issue 6893, 11 (2002)ADSCrossRefGoogle Scholar
  65. 65.
    M. Lima, Complexity. Mapping Patterns of Information (Princeton Architectural Press, New York, 2011)Google Scholar
  66. 66.
    M. Weiser, J.S. Brown, PowerGrid J. 1, 1 (1996)Google Scholar
  67. 67.
    Y. Rogers, Moving on from Weiser’s Vision of Calm Computing: Engaging UbiComp experiences (UbiComp 2006: Ubiquitous Computing: 8th International Conference, 2006)Google Scholar
  68. 68.
    C. Wisneski, H. Ishii, A. Dahley, M. Gorbet, S. Brave, b. Ullmer, P. Yarin, Ambient displays: Turning architectural space into an interface between people and digital information. In: Cooperative buildings: Integrating information, organization, and architecture (Springer, 1998), p. 22Google Scholar
  69. 69.
    C. Abt, Serious games (Viking Press, 1970)Google Scholar
  70. 70.
    M. Zyda, From visual simulation to virtual reality to games. Computer (2005)Google Scholar
  71. 71.
    N21 FuturICT The Road towards Ethical ICT, Jeroen van den Hoven et al.Google Scholar
  72. 72.
    N24-25 Policy Issues of Big Science, Janet Smart et al.Google Scholar
  73. 73.
    Institute for the Future, World Without Oil, http://worldwithoutoil.org (2007)
  74. 74.
    E. Huhtamo, J. Parikka (eds.), Media Archaelogy (UC Press, 2011)Google Scholar
  75. 75.
    N22 The FuturICT Education Accelerator, Jeffrey Johnson et al.Google Scholar
  76. 76.
    N22 The FuturICT Education Accelerator, Jeffrey Johnson et al.Google Scholar

Copyright information

© EDP Sciences and Springer 2012

Authors and Affiliations

  • J. Perelló
    • 1
  • D. Murray-Rust
    • 2
  • A. Nowak
    • 3
  • S. R. Bishop
    • 4
  1. 1.Departament de Física FonamentalUniversitat de BarcelonaBarcelonaSpain
  2. 2.Research Institute of Geography and the Lived Environment, GeoSciencesUniversity of EdinburghEdinburghUK
  3. 3.Center for Complex Systems, Institute for Social StudiesUniversity of WarsawWarsawPoland
  4. 4.Mathematics DepartmentUCLLondonUK

Personalised recommendations