The European Physical Journal Special Topics

, Volume 214, Issue 1, pp 571–595 | Cite as

Towards integrative risk management and more resilient societies

  • D. Al-Khudhairy
  • K. Axhausen
  • S. Bishop
  • H. Herrmann
  • B. Hu
  • W. Kröger
  • T. Lewis
  • J. MacIntosh
  • A. Nowak
  • S. Pickl
  • D. Stauffacher
  • E. Tan
Regular Article

Abstract

Society depends decisively on the availability of infrastructure systems such as energy, telecommunication, transportation, banking and finance, health care and governmental and public administration. Even selective damages of one of these infrastructures may result in disruptions of governmental, industrial or public functions. Vulnerability of infrastructures therefore provides spectacular leverage for natural disasters as well as criminal and terrorist actions. Threats and risks are part of the technological, economical, and societal development. This article focuses on the development and characterization of an integrative risk-management which, from the perspective of “resilient systems”, can be seen as an innovative and pro-active crisis management approach dealing with the increasing amount of complexity in societies in a comprehensive, agile and adaptive way.

Graphical abstract

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Bak, How Nature Works: The Science of Self-Organized Criticality (Copernicus Press, New York, 1996) ISBN 0-387-94791-4Google Scholar
  2. 2.
    S. Bouchon, The vulnerability of interdependent critical infrastructure systems: epistemological and conceptual state-of-the-art EU report, EU Commission, Joint Research Centre, Ispra, Italy (2006)Google Scholar
  3. 3.
    L. Buzna, K. Peters, D. Helbing, Physica A 363, 132 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    L. Buzna, K. Peters, H. Ammoser, C. Kühnert, D. Helbing, Phys. Rev. E 75, 056107 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    A. Clauset, M. Young, K.S. Gleditsch, J. Conflict Resol. 51, 58 (2007)CrossRefGoogle Scholar
  6. 6.
    M. D’Inverno, M. Luck, Understanding agent systems (Springer, Berlin, 2004)Google Scholar
  7. 7.
    I. Dobson, B.A. Carreras, V.E. Lynch, D.E. Newman, CHAOS 17, 15 (2007)CrossRefGoogle Scholar
  8. 8.
    I. Dolgopolova, B. Hu, A. Leopold, S. Pickl, Economic, Institutional and Technological Uncertainties of Emissions Trading – a System Dynamics Approach (to be published) (2011)Google Scholar
  9. 9.
    D.J. Watts, PNAS 99, 5766 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    G. Dupuy, Systèmes, réseaux et territoires, Presse de L’Ecole nationale des Ponts et Chausées, Paris (1985)Google Scholar
  11. 11.
    J.W. Forrester, Sys. Dynam. Rev. 10, 245 (1994)CrossRefGoogle Scholar
  12. 12.
    K. Gollin, E. Yüksel, S. Pickl, B. Hu. Does International Emission Trading Help All Participants Reduce Income Loss? A System Dynamics and Agent-based Simulation. InterSymp 2009 – Symposium on Multiagent Systems, Robotics and Cybernetics: Theory and Practice, International Institute for Advanced Studies in Systems Research and Cybernetics, Baden-Baden (2009)Google Scholar
  13. 13.
    P. Grossi, H. Kunreuther, Catastrophe Modeling: A New Approach to Managing Risk (Springer, New York, NY, 2005), p. 245Google Scholar
  14. 14.
    Dirk Helbing, S. Balietti, S. Bishop, P. Lukowicz, Eur. Phys. J. Special Topics 195, 165 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    D. Helbing, C. Kühnert, Physica A 328, 584 (2003)MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    D. Helbing, H. Ammoser, C. Kühnert, Disasters as extreme events and the importance of network interactions for disaster response management, edited by S. Albeverio, V. Jentsch, H. Kantz, Extreme Events in Nature and Society (Springer, Berlin, 2005), p. 319Google Scholar
  17. 17.
    B. Hu, A. Leopold, S. Pickl, H.-R. Vetter, Is Flexibility in a Professional Career Being Rewarded? An Agent-Based Simulation. Proceedings of the 4th Symposium on Multiagent Systems, Robotics and Cybernetics: Theory and Practice (2011)Google Scholar
  18. 18.
    B. Hu, M. Reimer, H.-R. Vetter, Mastering Complexity of Social Work, edited by B. Hu, K. Morasch, S. Pickl, M. Siegle, Operations Research Proceedings 2010 – Selected Papers of the Annual International Conference of the German Operations Research Society, ISSN 0721-5924 (Springer, 2011), p. 603Google Scholar
  19. 19.
    B. Hu, A. Leopold, Web-based Participatory System Dynamics Modeling – Concept and Prototype Development. The 2011 International Conference of the System Dynamics Society, Proceedings, Washington DC (2011)Google Scholar
  20. 20.
    M. Kaegi, R. Mock, W. Kröger, Analyzing maintenance strategies by agent-based simulations: A feasibility study. Reliability Engineering & System Safety 94, Issue 9, ISSN 0951-8320 (2009), p. 1416Google Scholar
  21. 21.
    W. Kröger, E. Zio, Vulnerable Systems, 1st edition (Springer, London, 2001) ISBN 085729654XGoogle Scholar
  22. 22.
    W. Kröger, Komplexe technische Systeme: Stand des Wissens und der Analysierbarkeit. Presentation on Symposium Deutsches Museum München, 18, Nov. (2010) http://www.cvl-a.de/download/risiko/Kroeger.pdf (10.10.2011)
  23. 23.
    Ted G. Lewis, Bak’s Sand Pile (Agile Press, 2011)Google Scholar
  24. 24.
    Ted G. Lewis, Network Science: Theory and Applications (John Wiley & Sons, 2009), p. 500Google Scholar
  25. 25.
    Ted G. Lewis, Critical Infrastructure Protection in Homeland Security: Defending a Networked Nation (John Wiley & Sons, 2006), p. 470Google Scholar
  26. 26.
    Ted G. Lewis, Cause-and-Effect or Fooled by Randomness? Homeland Security Affairs VI(1) (2010)Google Scholar
  27. 27.
    A.A. Moreira, J.S. Andrade Jr., H.J. Herrmann, J.O. Indekeu, How to make a fragile network robust and vice versa. Phys. Rev. Lett. 102, 018701 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    P. Ormerod, R. Colbaugh, Cascades of Failure and Extinction in Evolving Complex Systems. JASSS (2006) http://jasss.soc.surrey.ac.uk/9/4/9.html (06.11.2011)
  29. 29.
    K. Peters, L. Buzna, D. Helbing, Int. J. Critical Infrastruct. 4, 46 (2008)CrossRefGoogle Scholar
  30. 30.
    S. Pickl, E. Kropat, H. Hahn, Climatic Change 103, 327 (2010)CrossRefGoogle Scholar
  31. 31.
    S Pickl, A. Leopold, B. Hu, Why Do We Hesitate to Take Action Toward Implementation of Sustainable Technology? 10th International Conference CASYS’11 on Computing Anticipatory Systems, Liège, Belgium (2011)Google Scholar
  32. 32.
    J.C. Ramo, The Age of the Unthinkable Little (Brown & Company, New York, 2009), p. 280Google Scholar
  33. 33.
    M. Schläpfer, T. Kessler, Wolfgang Kröger, Rekuability analysis of electric power systems using an object-oriented hybrid modeling approach. Proceedings of the 16th power systems computation conference, Glasgow (2008)Google Scholar
  34. 34.
    C.M. Schneider, A.A. Moreira, J.S. Andrade Jr., S. Havlin, H.J. Herrmann, Proc. Nat. Acad. Sci. 108, 3838 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    C.M. Schneider, N.A.M. Araújo, S. Havlin, H.J. Herrmann, Towards designing robust coupled networks preprint [arXiv:1106.3234] (2011)Google Scholar
  36. 36.
    I. Simonsen, L. Buzna, K. Peters, S. Bornholdt, D. Helbing, Phys. Rev. Lett. 100, 218701 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    D. Stauffacher, W. Drake, P. Currion, J. Steinberger, Information and Communication Technology for Peace: The Role of Ict in Preventing, Responding to And Recovering from Conflict. ICT Task Force Series 11 (2005)Google Scholar
  38. 38.
    N.N. Taleb, The Black Swan: The Impact of the Highly Improbable (Penguin, 2007)Google Scholar
  39. 39.
    G.F. White, National hazards: local, national and global (Oxford University Press, New York, 1974)Google Scholar
  40. 40.
    Critical foundations: protecting America’s infrastructure. President’s Commission on Critical Infrastructure Protection, Washington, DC (1997)Google Scholar
  41. 41.
    Uniting and strengthening America by providing appropriate tools required to intercept and obstruct terrorism (USA Patriot Act), Act of 2001 (2001)Google Scholar
  42. 42.
    Critical infrastructure protection in the fight against terrorism, COM 702 final, European Commission (2004)Google Scholar
  43. 43.
    Terminology: basic terms of disaster risk reduction: glossary. UN/ISDR, New York (2004)Google Scholar
  44. 44.
    ICT for peace. United Nations ICT Task Force (2005) http://old.ict4peace.org/articles/ict4peace_ebook1.pdf (06.11.2011)

Copyright information

© EDP Sciences and Springer 2012

Authors and Affiliations

  • D. Al-Khudhairy
    • 1
  • K. Axhausen
    • 2
  • S. Bishop
    • 3
  • H. Herrmann
    • 4
  • B. Hu
    • 5
  • W. Kröger
    • 6
  • T. Lewis
    • 7
  • J. MacIntosh
    • 8
  • A. Nowak
    • 9
  • S. Pickl
    • 10
  • D. Stauffacher
    • 11
  • E. Tan
    • 12
  1. 1.Global Security and Crisis Management Unit, Institute for the Protection and Security of the CitizenJoint Research CentreIspraItaly
  2. 2.ETH Zürich, Institut für Verkehrsplanung/TransportsystemeZürichSwitzerland
  3. 3.Department of MathematicsUniversity College LondonLondonUK
  4. 4.Institut für BaustoffeETH ZürichZürichSwitzerland
  5. 5.Fakultät für BetriebswirtschaftUniversität der Bundeswehr MünchenMünchenGermany
  6. 6.Risk CenterETH ZürichZürichSwitzerland
  7. 7.Department of Computer ScienceNaval Postgraduate SchoolMontereyCAUSA
  8. 8.Institute for Security & Resilience StudiesUniversity College LondonLondonUK
  9. 9.Department of PsychologyFlorida Atlantic UniversityFloridaUSA
  10. 10.Fakultät für Informatik, Institut für Theoretische Informatik, Mathematik und Operations ResearchUniversität der Bundeswehr MünchenMünchenGermany
  11. 11.ICT4Peace FoundationGenèveSwitzerland
  12. 12.National Security Coordination CentreRAHS Solutions Centre, RPOSingaporeSingapore

Personalised recommendations