The European Physical Journal Special Topics

, Volume 214, Issue 1, pp 547–569 | Cite as

The emerging energy web

Regular Article

Abstract

There is a general need of elaborating energy-effective solutions for managing our increasingly dense interconnected world. The problem should be tackled in multiple dimensions -technology, society, economics, law, regulations, and politics- at different temporal and spatial scales. Holistic approaches will enable technological solutions to be supported by socio-economic motivations, adequate incentive regulation to foster investment in green infrastructures coherently integrated with adequate energy provisioning schemes. In this article, an attempt is made to describe such multidisciplinary challenges with a coherent set of solutions to be identified to significantly impact the way our interconnected energy world is designed and operated.

Graphical abstract

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. MacKay, Sustainable Energy without the hot air (UIT Cambridge Ltd., 2009)Google Scholar
  2. 2.
    S. Chu, A. Majumdar, Nature 488, 294 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    J. Tollefson, Nature News 480, 299 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    see also Nature 480, 292 (2011)Google Scholar
  5. 5.
    G.P. Peters, et al., Rapid growth in CO2 emissions after the 2008–2009 global financial crisis, Nature Climate Change, doi:10.1038/NCLIMATE1683 (2012)
  6. 6.
    M. Wolsink, Renewable Sustainable Energy Rev. 16, 822 (2012)CrossRefGoogle Scholar
  7. 7.
    M. Jakob, Nature Climate Change 2, 48 (2012)CrossRefGoogle Scholar
  8. 8.
    R. Carvalho, L. Buzna, W. Just, D. Helbing, D.K. Arrowsmith, Phys. Rev. E 85, 046101 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Ecofys, Abschätzung der Bedeutung des Einspeisemanagements nach EEG 2009 – Auswirkungen auf die Windenergieerzeugung in den Jahren 2009 und 2010, Ecofys Report (2011)Google Scholar
  10. 10.
    S. Silbermann, The Energy Web, Wired 9 (2011)Google Scholar
  11. 11.
    I. Carreras, D. Miorandi, R. Saint-Paul, I. Chlamtac, IEEE Trans. Systems, Man, and Cybernetics–PART A: Syst. Humans 40, 815 (2010)CrossRefGoogle Scholar
  12. 12.
    J. Rifkin, The Third Industrial Revolution. How lateral power is transforming energy, the economy and the world (Palgrave Makmillan, 2011)Google Scholar
  13. 13.
    K. Marvel, et al., Nature Climate Change 2, 3 (2012)Google Scholar
  14. 14.
    L. Fagiano, M. Milanese, D. Piga, IEEE Trans. Energy Convers. 25, 1 (2010)CrossRefGoogle Scholar
  15. 15.
    A. Franco, P. Salza, Renewable Energy 36, 743 (2011)CrossRefGoogle Scholar
  16. 16.
    Protection of Critical Infrastructures and the role of investment policies relating to national security, OECD Report (2008)Google Scholar
  17. 17.
    Critical Energy Infrastructure Protection. Assessment Results Communication, JRC Scientific and Technical Reports (2010)Google Scholar
  18. 18.
    Energy efficiency and U.S. competitiveness. Applying product and process innovation to build long-term economic advantage, White Paper, ABB Inc. www.abb.com
  19. 19.
    Smart Grids. ABB Review 1/2010. ABB Inc. www.abb.com
  20. 20.
    P. Franke, in: dena Konferenz: Strategieplattform Power to Gas, Deutsche Netzagentur, Berlin (2012)Google Scholar
  21. 21.
    SES, Wasserkraft ist nicht gleich Wasserkraft: Fakten zur Pumpspeicherung, SES (2012)Google Scholar
  22. 22.
    Rambol, Study on natural gas storage in the EU. Final report. Prepared for DG-Tren, October (2008)Google Scholar
  23. 23.
    U.S. Securities and Exchange Commission and the Commodity Futures Trading Commission, Findings Regarding the Market Events of May 6, 2010, September 30, 2010Google Scholar
  24. 24.
    C.R. Sunstein, Infotopia: How Many Minds Produce Knowledge (Oxford University Press, 2006) ISBN 0195189280Google Scholar
  25. 25.
    J. Surowiecki, The Wisdom of Crowds: Why the Many Are Smarter Than the Few and How Collective Wisdom Shapes Business, Economies, Societies and Nations (Little, Brown, 2004) ISBN 0-316-86173-1Google Scholar
  26. 26.
    J. Buhl, et al., Science 312, 1402 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    I.D. Couzin, Trends in Cognitive Science 13, 36 (2008)CrossRefGoogle Scholar
  28. 28.
    D. Helbing, Complex Systems 6, 391 (1992)MathSciNetMATHGoogle Scholar
  29. 29.
    A. Cavagna, et al., PNAS 312, 1402 (2010)Google Scholar
  30. 30.
    G. Gregoire, H. Chate, Phys. Rev. Lett. 92, 025702 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    R. McNeill Alexander, J. Biology 3, 7 (2004)CrossRefGoogle Scholar
  32. 32.
    T.M. Williams, W.A. Friedl, M.L. Fong, R.M. Yamada, P. Sedivy, J.E. Haun, Nature 355, 821 (1992)ADSCrossRefGoogle Scholar
  33. 33.
    F.E. Fish, Energy conservation by formation swimming: metabolic evidence from ducklings, in Mechanics and Physiology of Animal Swimming, edited by L. Mattock, Q. Bone, Rayner JMV (Cambridge University Press, 1994), p. 193Google Scholar
  34. 34.
    D. Weihs, Some hydrodynamical aspects of fish schooling, in Swimming and Flying in Nature, edited by T.Y. Wu, C.J. Brokaw, C. Brennen (New York: Plenum Press, 1975), p. 703Google Scholar
  35. 35.
    J.C. Svendsen, J. Skov, M. Bildsoe, J.F. Steffensen, J. Fish Biol. 62, 834 (2003)CrossRefGoogle Scholar
  36. 36.
    H. Weimerskirch, et al., Nature 413, 697 (2001)ADSCrossRefGoogle Scholar
  37. 37.
    J.T. Wootton, M. Emmerson, Annu. Rev. Ecol. Evol. Syst. 36, 419 (2005)CrossRefGoogle Scholar
  38. 38.
    S. Allesina, S. Tang, Nature 483, 205 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    J. Beyea, Science 328, 979 (2010)CrossRefGoogle Scholar
  40. 40.
    M. Schlapfer, K. Trantopoulos, W. Kröger, Smart Grid: Briefing Document, Laboratory for Safety Analysis, Report ETH Zurich (2010)Google Scholar
  41. 41.
    D. Helbing, Eur. Phys. J. Special Topics 214, 41 (2012)ADSGoogle Scholar
  42. 42.
    F. Giannotti, et al., Eur. Phys. J. Special Topics 214, 49 (2012)Google Scholar
  43. 43.
    M. Paolucci, et al., Eur. Phys. J. Special Topics 214, 77 (2012)Google Scholar
  44. 44.
    S. Buckinghum-Shum, et al., Eur. Phys. J. Special Topics 214, 109 (2012)Google Scholar
  45. 45.
    “Energy Corridors: Europe and neighboring countries” DG Research in Sustainable Energy Systems (2007) available at http://ec.europa.eu/research/energy/pdf/energy_corridors_en.pdf
  46. 46.
  47. 47.
  48. 48.
  49. 49.
    S. Rinaldi, J. Peerenboom, T. Kelly, IEEE Control Syst. Mag. 21, 11 (2001)CrossRefGoogle Scholar
  50. 50.
    R. Carvalho, L. Buzna, F. Bono, E. Gutierrez, W. Just, D. Arrowsmith, Phys. Rev. E 80, 016106 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    D. Arrowsmith, et al., http://www.manmadenet.eu/ (2010)
  52. 52.
    S.V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, S. Havlin, Nature 464, 1025 (2010)ADSCrossRefGoogle Scholar
  53. 53.
    S. Arianos, et al., Chaos 19, 013119 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    I. Simonsen, L. Buzna, K. Peters, S. Bornholdt, D. Helbing, Phys. Rev. Lett. 100, 218701 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    L.G. Ivan Pearson, Energy Policy 39, 5211 (2011)CrossRefGoogle Scholar
  56. 56.
    G. Strbac, Energy Policy 36, 4419 (2008)CrossRefGoogle Scholar
  57. 57.
    G. Yan, et al., Phys. Rev. Lett. 108, 218703 (2012)ADSCrossRefGoogle Scholar
  58. 58.
    J. Yick, B. Mukherjee, D. Ghosal, IEEE Comput. Netw. 52, 2292 (2008)CrossRefGoogle Scholar
  59. 59.
    C. Yu, B. Lee, H.Y. Youn, Wireless Comm. Mobile Comp. 3, 959 (2003)CrossRefGoogle Scholar
  60. 60.
    A. Conte, et al., IEEE Wireless Comm. 18, 50 (2011)CrossRefGoogle Scholar
  61. 61.
    M. Ajmone Marsan, A. Fernandez Anta, et al., IEEE Comm. Lett. 15, 773 (2011)CrossRefGoogle Scholar
  62. 62.
    G.Q. Zhang, EPL 92, 28001 (2010)ADSCrossRefGoogle Scholar
  63. 63.
    P. Koutroumpis, Telecomm. Policy 9, 471 (2009)CrossRefGoogle Scholar
  64. 64.
  65. 65.
    S. Albers, Comm. ACM 53, 86 (2010)CrossRefGoogle Scholar
  66. 66.
    D.J. Brown, C. Reams, Queue 8, 30 (2010)CrossRefGoogle Scholar
  67. 67.
    S. Still, D.A. Sivak, A.J. Bell, G.E. Crooks, Phys. Rev. Lett. 109, 120604 (2012)ADSCrossRefGoogle Scholar
  68. 68.
    R.L. Moss, E. Tzimas, H. Kara, P. Willis, J. Kooroshy, JRC Reports (2011)Google Scholar
  69. 69.
    S. Krohn, P. Lunkheneihemer, S. Meissner, Nat. Mater. 10, 899 (2011)ADSCrossRefGoogle Scholar
  70. 70.
    F. Giazotto, T.T. Heikkila, A. Luukanen, et al., Rev. Mod. Phys. 78, 217 (2006)ADSCrossRefGoogle Scholar
  71. 71.
    D. Helbing, I. Farkas, T. Vicsek, Phys. Rev. Lett. 84, 6 (2000)CrossRefGoogle Scholar
  72. 72.
    A. Carbone, M. Gilli, P. Mazzetti, L. Ponta, J. Appl. Phys. 108, 123916 (2010)ADSCrossRefGoogle Scholar
  73. 73.
    L. Ponta, A. Carbone, M. Gilli, P. Mazzetti, et al., Phys. Rev. B 79, 134513 (2009)ADSCrossRefGoogle Scholar
  74. 74.
    A. Carbone, S.D. Gunapala, H.C. Liu, G. Sarusi (eds.), Infr. Phys. Tech. 44, 305 (2003)CrossRefGoogle Scholar
  75. 75.
    A. Carbone, R. Introzzi, H.C. Liu, Infr. Phys. Tech. 52, 260 (2009)CrossRefGoogle Scholar
  76. 76.
    A. Carbone, R. Introzzi, H.C. Liu, Appl. Phys. Lett. 82, 4292 (2003)ADSCrossRefGoogle Scholar
  77. 77.
    K. Biswas, J. He, I.D. Blum, C.-I Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, Nature 489, 414 (2012)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2012

Authors and Affiliations

  1. 1.Department of Electronic Network and TelecommunicationPolitecnico di TorinoTorinoItaly
  2. 2.IMDEA Network InstituteMadridSpain
  3. 3.Queen Mary University of LondonLondonUK
  4. 4.Zurich University of Applied SciencesZurichSwitzerland
  5. 5.Corporate ResearchABB Switzerland LtdBaden-DättwilSwitzerland
  6. 6.JRC PettenPettenThe Netherlands
  7. 7.Department of Applied Science and Technology Politecnico di TorinoTorinoItaly
  8. 8.ETH Swiss Federal Institute of TechnologyZurichSwitzerland

Personalised recommendations