The European Physical Journal Special Topics

, Volume 214, Issue 1, pp 435–459 | Cite as

Complexity aided design

The FuturICT technological innovation paradigm
  • A. Carbone
  • M. Ajmone-Marsan
  • K. W. Axhausen
  • M. Batty
  • M. Masera
  • E. Rome
Regular Article

Abstract

“In the next century, planet earth will don an electronic skin. It will use the Internet as a scaffold to support and transmit its sensations. This skin is already being stitched together. It consists of millions of embedded electronic measuring devices: thermostats, pressure gauges, pollution detectors, cameras, microphones, glucose sensors, EKGs, electroencephalographs. These will probe and monitor cities and endangered species, the atmosphere, our ships, highways and fleets of trucks, our conversations, our bodies–even our dreams ....What will the earth’s new skin permit us to feel? How will we use its surges of sensation? For several years–maybe for a decade–there will be no central nervous system to manage this vast signaling network. Certainly there will be no central intelligence...some qualities of self-awareness will emerge once the Net is sensually enhanced. Sensuality is only one force pushing the Net toward intelligence”. These statements are quoted by an interview by Cherry Murray, Dean of the Harvard School of Engineering and Applied Sciences and Professor of Physics. It is interesting to outline the timeliness and highly predicting power of these statements. In particular, we would like to point to the relevance of the question “What will the earth’s new skin permit us to feel?” to the work we are going to discuss in this paper. There are many additional compelling questions, as for example: “How can the electronic earth’s skin be made more resilient?”; “How can the earth’s electronic skin be improved to better satisfy the need of our society?”;“What can the science of complex systems contribute to this endeavour?”

Graphical abstract

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Chui, M. Löffer, R. Roger, The Internet of Things (McKinsey Quarterly, 2010)Google Scholar
  2. 2.
    Big data: The next frontier for innovation, competition, and productivity (McKinsey Global Institute Report, 2011)Google Scholar
  3. 3.
    Y. Benkler, The Wealth of Networks: How Social Production transforms markets and freedom (Yale University Press, 2006)Google Scholar
  4. 4.
    P.F. Uhlir, The Socioeconomic effects of public sector information on digital networks toward a better understanding (U.S. National Committee for CODATA, 2011)Google Scholar
  5. 5.
    A. Hagiu, J. Wright, Multi-Sided Platforms (Harvard Business School preprint, 2011)Google Scholar
  6. 6.
    D. Helbing, et al., Eur. Phys. J. Special Topics 214, 11 (2012)ADSGoogle Scholar
  7. 7.
    A. Vespignani, et al., Eur. Phys. J. Special Topics 214, 347 (2012)Google Scholar
  8. 8.
    S. Cincotti, et al., Eur. Phys. J. Special Topics 214, 361 (2012)Google Scholar
  9. 9.
    G. Deffuant, et al., Eur. Phys. J. Special Topics 214, 519 (2012)Google Scholar
  10. 10.
    M. Paolucci, et al., Eur. Phys. J. Special Topics 214, 77 (2012)Google Scholar
  11. 11.
    F. Giannotti, et al., Eur. Phys. J. Special Topics 214, 49 (2012)Google Scholar
  12. 12.
    S. Buckinghum Shum, et al., Eur. Phys. J. Special Topics 214, 109 (2012)Google Scholar
  13. 13.
    Global Risk 2012, World Economic Forum Insight Report (2012)Google Scholar
  14. 14.
    Global Risk Management Survey, AON Risk Solution (2011)Google Scholar
  15. 15.
    M. Uhl-Bien, R. Marion, B. McKelvey, The Leadership Quarterly 18, 298 (2007)CrossRefGoogle Scholar
  16. 16.
    P. Selznick, Amer. Sociol. Rev. 13, 25 (1948)CrossRefGoogle Scholar
  17. 17.
    A Century of Innovation: Twenty Engineering Achievements that transformed our Lives, edited by G. Constable, B. Somerville (Washington D.C., National Academies Press, 2003)Google Scholar
  18. 18.
    M. San Miguel, et al., Eur. Phys. J. Special Topics 214, 245 (2012)Google Scholar
  19. 19.
    S. Havlin, et al., Eur. Phys. J. Special Topics 214, 273 (2012)Google Scholar
  20. 20.
    A. Ferscha, et al., Eur. Phys. J. Special Topics 214, 401 (2012)Google Scholar
  21. 21.
    S. Bishop, et al., Eur. Phys. J. Special Topics 214, 571 (2012)Google Scholar
  22. 22.
    F. van Harmelen, et al., Eur. Phys. J. Special Topics 214, 183 (2012)Google Scholar
  23. 23.
    J. Van den Hoven, et al., Eur. Phys. J. Special Topics 214, 153 (2012)Google Scholar
  24. 24.
    J. Johnson, et al., Eur. Phys. J. Special Topics 214, 215 (2012)Google Scholar
  25. 25.
    Battle of the Clouds, The Economist 17, 13 (2009)Google Scholar
  26. 26.
    J.P. Sluijs, P. Larouche, W. Sauter, Cloud Computing in the EU Policy Sphere, Tilec Discussion Paper (2011)Google Scholar
  27. 27.
    J.D. Lasica, Identity in the Age of Cloud Computing: The Next-Generation Internet’s impact on Business, Governance and Social Interaction (The Aspen Institute, 2009), p. 7Google Scholar
  28. 28.
    P. Mell, T. Grance, The NIST Definition of Cloud Computing: Reccomendations of the National Institute of Standard and Technology (NIST, 2011)Google Scholar
  29. 29.
    T. Segaran, J. Hammerbacher, Beautiful Data: The Stories Behind Elegant Data Solutions (2010)Google Scholar
  30. 30.
    M. Chen, et al., Eur. Phys. J. Special Topics 214, 461 (2012)Google Scholar
  31. 31.
    M. Chen, D. Ebert, H. Hagen, R.S. Laramee, R. van Liere, K.L. Ma, W. Ribarsky, G. Scheurmann, D. Silver, IEEE Comp. Graphics Appl. 29, 12 (2009)CrossRefGoogle Scholar
  32. 32.
    D.W.F. van Krevelen, R. Poelman, The Int. J. Virtual Reality, 9 1 (2010)Google Scholar
  33. 33.
    A. Carbone, Phys. Rev. E 76, 056703 (2007)MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    C. Turk, A. Carbone, B.M. Chiaia, Phys. Rev. E 81, 026706 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    A. Carbone, B.M. Chiaia, B. Frigo, C. Turk, Phys. Rev. E 82, 036103 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    L. Bazzanella, L. Caneparo, L. Corsico, F. Roccasalva (eds.), Future Cities and Regions. Simulation, Scenario and Visioning, Governance and Scales (New York, Heidelberg: Springer, 2011)Google Scholar
  37. 37.
    Li Jiong, Lei Humin, Liu Xingtang, Aerospace Control 22, 46 (2004)Google Scholar
  38. 38.
    Wang Zhi-jie, Wang Yun-jia, FU Yong-ming, Eng. Surveying Mapping 15, 44 (2006)Google Scholar
  39. 39.
    Tang Jie, Gong Guang-hong, J. Syst. Simul. 18, 453 (2006)Google Scholar
  40. 40.
    M. Ajmone-Marsan, et al., Eur. Phys. J. Special Topics 214, 547 (2012)Google Scholar
  41. 41.
    A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, B. Maggs, Cutting the Electric Bill for Internet-Scale Systems, Proceedings of ACM SIGCOMM (ACM Press, 2009), p. 123Google Scholar
  42. 42.
    P.C. Wong, K. Schneider, P. Mackey, H. Foote, G. Chin Jr., R.T. Guttromson, J. Thomas, IEEE Trans. Vis. Comput. Graph. 15, 410 (2009)CrossRefGoogle Scholar
  43. 43.
    M. Batty, et al., Eur. Phys. J. Special Topics 214, 481 (2012)Google Scholar
  44. 44.
    A. Aurigi, Making the Digital City: The Early Shaping of Urban Internet Space (Ashgate Publishing Company, Farnborough, UK, 2005)Google Scholar
  45. 45.
    M. Batty, The Guardian, Thursday 22, 29 (1989)Google Scholar
  46. 46.
    M. Batty, International Planning Studies 2, 155 (1997)CrossRefGoogle Scholar
  47. 47.
    A. Caragliu, C. Del Bo, P. Nijkamp, Smart Cities in Europe, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics, Research Memoranda 0048 (Amsterdam, the Netherlands, 2009)Google Scholar
  48. 48.
    W.H. Dutton, J.G. Blumler, K.L. Kraemer, Wired Cities: Shaping the Future of Communications (G. K. Hall, New York, 1987)Google Scholar
  49. 49.
    C. Harrison, B. Eckman, R. Hamilton, P. Hartswick, J. Kalagnanam, J. Paraszczak, P. Williams, IBM J. Res. Develop. 54, 1 (2010)CrossRefGoogle Scholar
  50. 50.
    K.W. Axhausen, T. Garling, Transport Rev. 12, 323 (1992)CrossRefGoogle Scholar
  51. 51.
    K.W. Axhausen, A. Zimmermann, S. Schonfelder, Transportation 29, 95 (2002)CrossRefGoogle Scholar
  52. 52.
    K.W. Axhausen, R.H.M. Emmerink, P. Nijkamp, et al., Transportation 22, 21 (1995)CrossRefGoogle Scholar
  53. 53.
    D. Helbing, Rev. Mod. Phys. 73, 1067 (2001)ADSCrossRefGoogle Scholar
  54. 54.
    D. Helbing, P. Molnar, Phys. Rev. E 51, 4282 (1995)ADSCrossRefGoogle Scholar
  55. 55.
    D. Helbing, K. Nagel, Cont. Phys. 45, 405 (2004)ADSCrossRefGoogle Scholar
  56. 56.
    M. Treiber, A. Hennecke, D. Helbing, Phys. Rev. E 62, 1805 (2000)ADSCrossRefGoogle Scholar
  57. 57.
    Z. Neda, F. Jarai-Szabo, E. Kaptalan, R. Mahnke, Control Eng. Appl. Informatics 11, 3 (2009)Google Scholar
  58. 58.
    W. Kroeger, E. Zio, Vulnerable Systems (Springer, 2011)Google Scholar
  59. 59.
    B.M. Hammerli, A. Renda, Protecting Critical Infrastructure in the EU, CEPS Task Force Report (Centre for European Policy Studies, Brussels, 2011)Google Scholar
  60. 60.
    E.M. Brunner, M. Suter, International CIIP Handbook 2008/2009 (Center for Security Studies, ETH Zurich, Switzerland, 2009)Google Scholar
  61. 61.
    World Economic Forum, Building Resilience to Natural Disasters: A Framework for Private Sector Engagement (2008)Google Scholar
  62. 62.
    S. Weinberger, Nature 474, 142 (2011)CrossRefGoogle Scholar
  63. 63.
    I. Simonsen, L. Buzna, K. Peters, S. Bornholdt, D. Helbing, Phys. Rev. Lett. 100, 218701 (2008)ADSCrossRefGoogle Scholar
  64. 64.
    K. Peters, L. Buzna, D. Helbing, Int. J. Critical Infrastructures 4, 46 (2008)CrossRefGoogle Scholar
  65. 65.
    D. Helbing, H. Ammoser, C. Kuhnert, Disasters as extreme events and the importance of network interactions for disaster response management, edited by S. Albeverio, V. Jentsch, H. Kantz (Springer, Berlin, 2005), p. 319Google Scholar
  66. 66.
    R. Klein, E. Rome, C. Beyel, R. Linnemann, W. Reinhardt, A. Usov (2009): Information Modelling and Simulation in large interdependent Critical Infrastructures in IRRIIS, Proceedings of the 3rd International Workshop on Critical Information Infrastructures Security (Springer, LNCS 5508, Frascati, Italy, 2008), p. 41Google Scholar
  67. 67.
    F. Kuhl, R. Weatherly, J. Dahmann, Creating Computer Simulation Systems: An Introduction to the High Level Architecture (Upper Saddle River, NJ: Prentice Hall, 1999) (ISBN: 0-13-022511-8; Published: Oct 8, 1999; Copyright 2000)Google Scholar
  68. 68.
    H.A.M. Luiijf, M.H.A. Klaver, International Interdependency of C(I)IP in Europe (Internationale Ver echtung von C(I)IP in Europa), edited by B.M. Hmmerli, S. Wolthusen, Proceedings of CIP Europe 2005 Critical Infrastructure Protection (GI CIS Forum, Bonn, Germany, 2005)Google Scholar
  69. 69.
    A.H. Nieuwenhuijs, H.A.M. Luiijf, M.H.A. Klaver, Modelling Critical Infrastructure Dependencies, in: IFIP International Federation for Information Processing, Critical Infrastructure Protection, edited by E. Gtz, S. Shenoi (Boston: Springer, 2008)Google Scholar
  70. 70.
    P. Pederson, D. Dudenhoeffer, S. Hartley, M. Permann, Critical Infrastructure Interdependency Modelling: A Survey of U.S. and International Research, INL Technical Document: INL/EXT-06-11464 (2006)Google Scholar
  71. 71.
    S. Rinaldi, J. Peerenboom, T. Kelly, IEEE Control Syst. Magaz. 11 (2001)Google Scholar

Copyright information

© EDP Sciences and Springer 2012

Authors and Affiliations

  • A. Carbone
    • 1
    • 2
  • M. Ajmone-Marsan
    • 1
    • 3
  • K. W. Axhausen
    • 2
  • M. Batty
    • 4
  • M. Masera
    • 5
  • E. Rome
    • 6
  1. 1.Politecnico di TorinoTorinoItaly
  2. 2.ETH ZurichZurichSwitzerland
  3. 3.IMDEA NetworkMadridSpain
  4. 4.UCLLondonUK
  5. 5.JRCPettenThe Netherlands
  6. 6.Fraunhofer IAISFraunhoferGermany

Personalised recommendations