The European Physical Journal Special Topics

, Volume 214, Issue 1, pp 245–271 | Cite as

Challenges in complex systems science

  • M. San Miguel
  • J. H. Johnson
  • J. Kertesz
  • K. Kaski
  • A. Díaz-Guilera
  • R. S. MacKay
  • V. Loreto
  • P. Érdi
  • D. Helbing
Open Access
Regular Article

Abstract

FuturICT foundations are social science, complex systems science, and ICT. The main concerns and challenges in the science of complex systems in the context of FuturICT are laid out in this paper with special emphasis on the Complex Systems route to Social Sciences. This include complex systems having: many heterogeneous interacting parts; multiple scales; complicated transition laws; unexpected or unpredicted emergence; sensitive dependence on initial conditions; path-dependent dynamics; networked hierarchical connectivities; interaction of autonomous agents; self-organisation; non-equilibrium dynamics; combinatorial explosion; adaptivity to changing environments; co-evolving subsystems; ill-defined boundaries; and multilevel dynamics. In this context, science is seen as the process of abstracting the dynamics of systems from data. This presents many challenges including: data gathering by large-scale experiment, participatory sensing and social computation, managing huge distributed dynamic and heterogeneous databases; moving from data to dynamical models, going beyond correlations to cause-effect relationships, understanding the relationship between simple and comprehensive models with appropriate choices of variables, ensemble modeling and data assimilation, modeling systems of systems of systems with many levels between micro and macro; and formulating new approaches to prediction, forecasting, and risk, especially in systems that can reflect on and change their behaviour in response to predictions, and systems whose apparently predictable behaviour is disrupted by apparently unpredictable rare or extreme events. These challenges are part of the FuturICT agenda.

Graphical abstract

References

  1. 1.
    P.W. Anderson, Science 177, 393 (1972)ADSCrossRefGoogle Scholar
  2. 2.
    L. Pietronero, Europhys. News 39, 26 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Managing Complexity: Insights, Concepts, Applications, edited by D. Helbig (Springer, 2008)Google Scholar
  4. 4.
    L. Pietronero, Nat. Phys. 6, 641 (2010)CrossRefGoogle Scholar
  5. 5.
    C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys. 81, 591 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    P. Ball, Critical Mass: How One Thing Leads to Another (Farrar, Straus and Giroux, London, 2004)Google Scholar
  7. 7.
    E. Majorana, Scientia 36, 58 (1942)Google Scholar
  8. 8.
    E. Majorana, Quant. Finance 5, 133 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    T. Schelling, Micromotives and Macrobehavior (Norton, 1978)Google Scholar
  10. 10.
    R. Axelrod, J. Conflict Resolution 41, 203 (1997)CrossRefGoogle Scholar
  11. 11.
    D. Centola, J.C. González-Avella, V.M. Eguíluz, M. San Miguel, J. Conflict Resolution 51, 905 (2007)CrossRefGoogle Scholar
  12. 12.
    J.H. Johnson, Eur. J. Social Sci. Res. 23, 115 (2010)CrossRefGoogle Scholar
  13. 13.
    D. Helbing, Sci. Cult. 76, 315 (2010) [arXiv:1007.2818]Google Scholar
  14. 14.
    T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, O. Shochet, Phys. Rev. Lett. 75, 1226 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    C. Granger, Econometrica 37, 424 (1969)CrossRefGoogle Scholar
  16. 16.
    D.Y. Kenett, M. Tumminello, A. Madi, G. Gur-Gershgoren, R.N. Mantegna, E. Ben-Jacob, PLoS ONE 5, e15032 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    S. Hempel, A. Koseska, J. Kurths, Z. Nikoloski, Phys. Rev. Lett. 107, 054101 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    N. Wiener, Cybernetics: Or Control and Communication in the Animal and the Machine. Paris (Hermann and Cie), Camb. Mass. (MIT Press)Google Scholar
  19. 19.
    G. Soros, The New Paradigm for Financial Markets. Public Affairs (2008), New YorkGoogle Scholar
  20. 20.
    Jerusalem Declaration on Data Access, Use and Dissemination (2008) http://portale.unipa.it/ocs/home/jerusalemSubscription.html
  21. 21.
    D. Lazer, et al., Comput. Social Sci. 323, 721 (2009)Google Scholar
  22. 22.
    D. Helbing, S. Balietti, Euro. Phys. J. Special Topics 195, 3 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Putting People on the Map: Protecting Confidentiality with Linked Social-Spatial Data, www.nap.edu/catalog/11865.html (Natl. Acad. Sci., Washington DC, 2007)
  24. 24.
    D. Helbing, W. Yu, Proc. Natl. Acad. Sci. (PNAS) USA 107, 5265 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    M.B. Araujo, M. New, Trends Ecol. Evol. 22, 42 (2006)CrossRefGoogle Scholar
  26. 26.
    J.M. Bates, C.W. Granger, Operat. Res. Quart 20, 451 (1969)CrossRefGoogle Scholar
  27. 27.
    A. Gozolchiani, S. Havlin, K. Yamasaki, Phys. Rev. Lett. 107, 148501 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    E. Kalnay, Atmospheric modeling, data assimilation, and predictability (Cambridge University Press, 2003)Google Scholar
  29. 29.
    D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)ADSCrossRefGoogle Scholar
  30. 30.
    A.L. Barabasi, R. Albert, Science 286, 509 (1999)MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    S. Bocaletti, V. Latora, Y. Moreno, M. Chavez, D.U. Hwang, Phys. Rep. 424, 175 (2006)MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    A. Barrat, M. Barthelemy, A. Vespignani, Dynamical processes on complex networks (Cambridge University press, 2008)Google Scholar
  33. 33.
    R. Carvalho, L. Buzna, F. Bono, E. Gutiérrez, W. Just, D. Arrowsmith, Phys. Rev. E 80, 016106 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    S. Buldyrev, R. Parshani, G. Paul, H.E. Stanley, S. Havlim, Nature 464, 1025 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    M. González, P. Lind, H. Herrmann, Phys. Rev. Lett. 96, 088702 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    J. Borge-Holthoefer, A. Rivero, I. Garca, E. Cauh, A. Ferrer, D. Ferrer, D. Francos, D. Iiguez, M.P. Prez, G. Ruiz, F. Sanz, F. Serrano, C. Vias, A. Tarancon, Y. Moreno, PLoS ONE ONE 6, e23883 (2011)CrossRefGoogle Scholar
  37. 37.
    J. Leskovec, E. Horvitz, Planetary-scale views on a large instant-messaging network (Proceeding of the 17th international conference on World Wide Web, ACM, 2008)Google Scholar
  38. 38.
    A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Phys. Rep. 469, 93 (2008)MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    M. Zimmermann, V.M. Eguíluz, M. San Miguel, Phys. Rev. E 69, 065102 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    F. Vazquez, V.M. Eguíluz, M. San Miguel, Phys. Rev. Lett. 100, 108702 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    P. Holme, J. Saramäki, (2011), Physics Reports (in press) (2012) [arXiv 1108.1780]Google Scholar
  42. 42.
    S. Havlin, et al., Eur. Phys. J. Special Topics 214, 273 (2012)Google Scholar
  43. 43.
    J.C. González-Avella, V.M. Eguíluz, M. Marsili, F. Vega-Redondo, M. San Miguel, PLoS ONE 6, e20207 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    P.M. Johnson, Human centered information integration for the smart grid, Technical Report, University of Hawaii (2009) http://csdl.ics.hawaii.edu/techreports/09-15/09-15.pdf
  45. 45.
    Al Gore, An inconvenient truth (2007)Google Scholar
  46. 46.
    J. Randers, D. Meadows, D. Meadows, Limits to Growth (Chelsea Green Publishing, 2004)Google Scholar
  47. 47.
    J. McGlade, Climate crisis needs empowered people (2009) http://news.bbc.co.uk/1/hi/sci/tech/7893230.stm
  48. 48.
    P. Wang, M.C. González, C.A. Hidalgo, A.-L. Barabasi, Science 324, 1071 (2009)ADSCrossRefGoogle Scholar
  49. 49.
    G. Pickard, W. Pan, I. Rahwan, M. Cebrian, R. Crane, A. Madan, A. Pentland, Science 334, 509 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    E. Paulos, R. Honicky, E. Goodman, Sensing atmosphere workshop, Position paper for the sensing on everyday mobile phones in support of participatory research, ACM SenSys (2007)Google Scholar
  51. 51.
    EveryAware Project, www.everyaware.eu
  52. 52.
    L. von Ahn, Games with a Purpose, Computer 39, 92 (2006)Google Scholar
  53. 53.
    L. von Ahn, L. Dabbish, Labeling images with a computer game, CHI ’04: Proceedings of the SIGCHI conference on Human factors in computing systems (2004), p. 319Google Scholar
  54. 54.
    L.B. Chilton, C.T. Sims, M. Goldman, G. Little, R.C. Miller, Seaweed: a web application for designing economic games, in Proceedings of the ACM SIGKDD Workshop on Human Computation, HCOMP ’09, New York, NY, USA (2009), p. 34Google Scholar
  55. 55.
    G. Paolacci, C. Jesse, P.G. Ipeirotis, Running experiments on amazon mechanical turk Judgment and Decision Making 5, 411 (2010)Google Scholar
  56. 56.
    Z. Abbassi, C. Aperjis, B.A. Huberman, Swayed by Friends or by the Crowd?, http://arxiv.org/abs/1111.0307 (2011)
  57. 57.
    S. Suri, D.J. Watts, Cooperation and Contagion in Networked Public Goods Experiments Computing Research Repository (CORR) (2010)Google Scholar
  58. 58.
    J. Giles, Nature 470, 18 (2011)ADSCrossRefGoogle Scholar
  59. 59.
    A.J.W. Ward, et al., Proc. Nat. Acad. Sci. (PNAS) USA 108, 2312 (2011)ADSCrossRefGoogle Scholar
  60. 60.
    L. Conradt, Nature 471, 40 (2011)ADSCrossRefGoogle Scholar
  61. 61.
    J.P. Crutchfield, W.L. Ditto, S. Sinha, Chaos 20, 037101 (2010)ADSCrossRefGoogle Scholar
  62. 62.
    H. Jaeger, H. Haas, Science 304, 78 (2004)ADSCrossRefGoogle Scholar
  63. 63.
    D.V. Buonomano, W. Maass, Nat. Rev. Neurosc. 10, 113 (2009)CrossRefGoogle Scholar
  64. 64.
    L. Appeltant, M.C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C.R. Mirasso, I. Fischer, Nature Comm. 2, 468 (2011)ADSCrossRefGoogle Scholar
  65. 65.
    E.L. Trist, K.W. Bamforth, Some social and psychological consequences of the longwall method of coal getting: An Examination of the Psychological Situation and Defences of a Work Group in Relation to the Social Structure and Technological Content of the Work System, Human Relations 4, 3 (1951)Google Scholar
  66. 66.
    P. Grabowicz, J.J. Ramasco, E. Moro, J.M. Pujol, V.M. Eguíluz, PLoS ONE 7, e29358 (2012)ADSCrossRefGoogle Scholar
  67. 67.
    D. Sornette, Why Stock Markets Crash: Critical Events in Complex Financial Systems (Princeton Univ. Press, 2003)Google Scholar
  68. 68.
    S. Albeverio, V. Jentsch, H. Kantz (eds.), Extreme Events in Nature and Society (Springer, Berlin/Heidelberg/New York, 2006)Google Scholar
  69. 69.
    P. Érdi, Complexity Explained (Springer Verlag, Berlin-Heidelberg, 2007)Google Scholar
  70. 70.
    P. Bak, How Nature Works: The Science of Self-Organized Criticality (New York: Copernicus, 2007)Google Scholar
  71. 71.
    P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. Let. 59, 381 (1987)MathSciNetADSCrossRefGoogle Scholar
  72. 72.
    D. Sornette, Predictability of catastrophic events: Material rupture, earthquakes, turbulence, financial crashes, and human birth, Proc. Natl. Acad. Sci. (PNAS) USA (2002)Google Scholar
  73. 73.
    E.D. Sontag, Mathematical control theory 2nd ed. (Springer, 1998)Google Scholar
  74. 74.
    R.S. MacKay, Nonlinearity in Complexity Science, Nonlinearity 21, T273 (2008)MathSciNetADSMATHGoogle Scholar
  75. 75.
    R.S. MacKay, J. Difference Eqns. Applns. 17, 1155 (2011)MathSciNetMATHCrossRefGoogle Scholar
  76. 76.
    M. Diakonova, R.S. MacKay, Int. J. Bif. Chaos 21, 2297 (2011)CrossRefGoogle Scholar
  77. 77.
    T.M. Liggett, Interacting Particle Systems (Springer, reprinted, 2004)Google Scholar
  78. 78.
    M. Hechter, C. Horne, Theories of Social Order (Stanford Univ. Press, 2003)Google Scholar
  79. 79.
    H. Simon, The Sciences of the artificial (MIT Press, Cambridge, Mass, 1969)Google Scholar
  80. 80.
    D. Sornier, Dragon Kings, Black Swans and the Prediction of Crises. International Journal of Terraspace Science and Engineering (2009) http://ssrn.com/abstract=1470006Google Scholar
  81. 81.
    D. Helbing, I. Farkas, T. Vicsek, Nature 407, 487 (28 September 2000), doi:10.1038/35035023 CrossRefADSGoogle Scholar
  82. 82.
    D. Helbing, A. Johansson, H.Z. Al-Abideen, The Dynamics of Crowd Disasters: An Empirical Study. Phys. Rev. E 75, 046109 (2007)Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • M. San Miguel
    • 1
  • J. H. Johnson
    • 2
  • J. Kertesz
    • 3
  • K. Kaski
    • 4
  • A. Díaz-Guilera
    • 5
  • R. S. MacKay
    • 6
  • V. Loreto
    • 7
    • 8
  • P. Érdi
    • 9
    • 10
  • D. Helbing
    • 11
  1. 1.IFISC (CSIC-UIB)Palma de MallorcaSpain
  2. 2.Faculty of Mathematics, Computing & TechnologyThe Open UniversityMilton KeynesUK
  3. 3.Institute of PhysicsBudapest Univ. of Technology & EconomicsBudapestHungary
  4. 4.Dept. of Biomedical Engineering & Computational ScienceAaltoFinland
  5. 5.Dept. Fisica FonamentalUniversitat de BarcelonaBarcelonaSpain
  6. 6.Mathematics Institute & Centre for Complexity ScienceUniversity of WarwickWarwickUK
  7. 7.Physics Dept.Sapienza Universty of RomeRomeItaly
  8. 8.ISI FoundationTurinItaly
  9. 9.Institute for Particle and Nuclear Physics, Wigner Research Centre for PhysicsHungarian Academy of SciencesBudapestHungary
  10. 10.Center for Complex Systems StudiesKalamazoo CollegeMichiganUSA
  11. 11.ETH ZürichZürichSwitzerland

Personalised recommendations