The European Physical Journal Special Topics

, Volume 214, Issue 1, pp 183–214 | Cite as

Theoretical and technological building blocks for an innovation accelerator

  • F. van Harmelen
  • G. Kampis
  • K. Börner
  • P. van den Besselaar
  • E. Schultes
  • C. Goble
  • P. Groth
  • B. Mons
  • S. Anderson
  • S. Decker
  • C. Hayes
  • T. Buecheler
  • D. Helbing
Open Access
Regular Article

Abstract

Modern science is a main driver of technological innovation. The efficiency of the scientific system is of key importance to ensure the competitiveness of a nation or region. However, the scientific system that we use today was devised centuries ago and is inadequate for our current ICT-based society: the peer review system encourages conservatism, journal publications are monolithic and slow, data is often not available to other scientists, and the independent validation of results is limited. The resulting scientific process is hence slow and sloppy. Building on the Innovation Accelerator paper by Helbing and Balietti [1], this paper takes the initial global vision and reviews the theoretical and technological building blocks that can be used for implementing an innovation (in first place: science) accelerator platform driven by re-imagining the science system. The envisioned platform would rest on four pillars: (i) Redesign the incentive scheme to reduce behavior such as conservatism, herding and hyping; (ii) Advance scientific publications by breaking up the monolithic paper unit and introducing other building blocks such as data, tools, experiment workflows, resources; (iii) Use machine readable semantics for publications, debate structures, provenance etc. in order to include the computer as a partner in the scientific process, and (iv) Build an online platform for collaboration, including a network of trust and reputation among the different types of stakeholders in the scientific system: scientists, educators, funding agencies, policy makers, students and industrial innovators among others. Any such improvements to the scientific system must support the entire scientific process (unlike current tools that chop up the scientific process into disconnected pieces), must facilitate and encourage collaboration and interdisciplinarity (again unlike current tools), must facilitate the inclusion of intelligent computing in the scientific process, must facilitate not only the core scientific process, but also accommodate other stakeholders such science policy makers, industrial innovators, and the general public. We first describe the current state of the scientific system together with up to a dozen new key initiatives, including an analysis of the role of science as an innovation accelerator. Our brief survey will show that there exist many separate ideas and concepts and diverse stand-alone demonstrator systems for different components of the ecosystem with many parts are still unexplored, and overall integration lacking. By analyzing a matrix of stakeholders vs. functionalities, we identify the required innovations. We (non-exhaustively) discuss a few of them: Publications that are meaningful to machines, innovative reviewing processes, data publication, workflow archiving and reuse, alternative impact metrics, tools for the detection of trends, community formation and emergence, as well as modular publications, citation objects and debate graphs. To summarize, the core idea behind the Innovation Accelerator is to develop new incentive models, rules, and interaction mechanisms to stimulate true innovation, revolutionizing the way in which we create knowledge and disseminate information.

Graphical abstract

References

  1. 1.
    D. Helbing, S. Balietti, Eur. Phys. J. Special Topics 195, 101 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    A.A. Alsheikh-Ali, W. Qureshi, M.H. Al-Mallah, J.P.A. Ioannidis. PloS one 6, e24357 (2011)CrossRefGoogle Scholar
  3. 3.
    T. Opthof, L. Leydesdorff, A comment to the paper by waltman, et al., Scientometrics, 87, 467 (2011)Google Scholar
  4. 4.
    T. Opthof, L. Leydesdorff, A comment to the paper by waltman, et al., Scientometrics 88, 1011 (2011)Google Scholar
  5. 5.
    L. Bornmann, L. Leydesdorff, P. Van den Besselaar, J. Informetrics 4, 211 (2010)CrossRefGoogle Scholar
  6. 6.
    V. Stodden, available at SSRN 1550193, (4773-10) (2010)Google Scholar
  7. 7.
    H. Masum, Y.C. Zhang, First Monday 9, 7 (2004)Google Scholar
  8. 8.
    C. Cattuto, A. Barrat, A. Baldassarri, G. Schehr, V. Loreto, Proc. Nat. Acad. Sci. 106, 10511 (2009)Google Scholar
  9. 9.
    S.J. Kline, N. Rosenberg, The positive sum strategy: Harnessing Technol. Eco. Growth 14, 640 (1986)Google Scholar
  10. 10.
    R.R. Nelson, S.G. Winter, Res. Policy 6, 36 (1977)CrossRefGoogle Scholar
  11. 11.
    J. Caraça, B.Å. Lundvall, S. Mendonça, Technol. Forecasting Social Change 76, 861 (2009)CrossRefGoogle Scholar
  12. 12.
    L. D’Adderio, Inside the virtual product: How organizations create knowledge through software (Edward Elgar Pub, 2004)Google Scholar
  13. 13.
    K. Knorr-Cetina, Epistemic cultures: How the sciences make knowledge (Harvard University Press, 1999)Google Scholar
  14. 14.
    B. Alex, C. Grover, B. Haddow, M. Kabadjov, E. Klein, M. Matthews, R. Tobin, X. Wang, et al., Automating curation using a natural language processing pipeline, Genome Biology 9 (Suppl 2), S10 (2008)Google Scholar
  15. 15.
    G. La Rowe, S.A. Ambre, J.W. Burgoon, W. Ke, K. Börner, In Proceedings of the 11 th International Conference on Scientometrics and Informetrics, (2007), p. 25Google Scholar
  16. 16.
    K. Börner, M. Conlon, J. Corson-Rikert, Y. Ding, VIVO: A Semantic Approach to Scholarly Networking and Discovery (Morgan & Claypool Publishers LLC, 2012)Google Scholar
  17. 17.
    S. Bechhofer, M. Hauswirth, J. Hoffmann, M. Koubarakis, The Semantic Web: Research and Applications: 5th European Semantic Web Conference, ESWC 2008, Tenerife, Canary Islands, Spain, vol. 5021 (Springer, 2008)Google Scholar
  18. 18.
    V. Belak, M. Karnstedt, C. Hayes, Procedia-Social Behavioral Sci. 22, 37 (2011)CrossRefGoogle Scholar
  19. 19.
    P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin, B. Schwikowski, T. Ideker, Genome Res. 13, 2498 (2003)CrossRefGoogle Scholar
  20. 20.
    A.S. Elnashai, S. Hampton, H. Karaman, J.S. Lee, T. Mclaren, J. Myers, C. Navarro, M. Şahin, B. Spencer, N. Tolbert, J. Earthquake Eng. 12 (S2), 100 (2008)CrossRefGoogle Scholar
  21. 21.
    G. Kampis, L. Gulyás, Z. Szászi, Z. Szakolczi, S. Soós, In Applied Social Network Analysis Conference (2009), p. 27Google Scholar
  22. 22.
    C. Goble, D. De Roure, The impact of workflow tools on data-centric research in data intensive computing, edited by A.J.G. Hey, S. Tansley, K.M. Tolle, The fourth paradigm: data-intensive scientific discovery (Microsoft Research Redmond, WA, 2009), p. 137Google Scholar
  23. 23.
    B. Ludäscher, I. Altintas, S. Bowers, J. Cummings, T. Critchlow, E. Deelman, D.D. Roure, J. Freire, C. Goble, M. Jones, et al., Scientific Data Management: Challenges, Existing Technology, and Deployment, Computational Science Series (2009), p. 476Google Scholar
  24. 24.
    P. Nowakowski, E. Ciepiela, D. Hareżlak, J. Kocot, M. Kasztelnik, T. Bartyński, J. Meizner, G. Dyk, M. Malawski, Procedia Computer Sci. 4, 608 (2011)CrossRefGoogle Scholar
  25. 25.
    F. Leisch, Sweave, dynamic generation of statistical reports using literate data analysis (2002)Google Scholar
  26. 26.
    P. Fox, J. Hendler, The Fourth Paradigm: Data Intensive Scientific Discovery, edited by T. Hey, S. Tansley, K. Tolle, Microsoft External Research (2009), p. 145Google Scholar
  27. 27.
    P. Groth, T. Gurney, Proceedings of the WebSci10: Extending the Frontiers of Society On-Line (2010)Google Scholar
  28. 28.
    B. Mons, M. Ashburner, C. Chichester, E. Van Mulligen, M. Weeber, J. Den Dunnen, G.J. Van Ommen, M. Musen, M. Cockerill, H. Hermjakob, et al., Genome Biol. 9, R89 (2008)CrossRefGoogle Scholar
  29. 29.
    G. William Baxt, F. Joseph Waeckerle, A. Jesse Berlin, L. Michael, Ann. Emerg. Med. 32, 310 (1998)CrossRefGoogle Scholar
  30. 30.
    Science UK House of Commons and Technology Committee, Peer Review in Scientific Publications (2011)Google Scholar
  31. 31.
    F. Prinz, T. Schlange, K. Asadullah, Nature Rev. Drug Discovery 10, 712 (2011)CrossRefGoogle Scholar
  32. 32.
    B.A. Huberman, Nature 482, 308 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    D. Taraborelli, Soft peer review: Social software and distributed scientific evaluation (2008)Google Scholar
  34. 34.
    J. Priem, D. Taraborelli, P. Groth, C. Neylon, Altmetrics: a manifesto. Web. http://altmetrics. org/manifesto (2010)
  35. 35.
    C. Neylon, S. Wu, Article-level metrics and the evolution of scientific impact, PLoS biology 7, e1000242 (2009)Google Scholar
  36. 36.
    J. Priem, B.H. Hemminger, First Monday 15, 9 (2010)Google Scholar
  37. 37.
    J. Priem, K.L. Costello, Proc. Amer. Soc. Inf. Sci. Technol. 47, 1 (2010)CrossRefGoogle Scholar
  38. 38.
    J. Letierce, A. Passant, J.G. Breslin, S. Decker, In Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media (2010), p. 279Google Scholar
  39. 39.
    J. Letierce, A. Passant, J. Breslin, S. Decker (2010)Google Scholar
  40. 40.
    J.G. Breslin, A. Passant, S. Decker, Social Semantic Web (Springer, 2009)Google Scholar
  41. 41.
    A. Passant, J. Breslin, S. Decker, Web Engineering (2010), p. 263Google Scholar
  42. 42.
    A. Passant, P. Ciccarese, J.G. Breslin, T. Clark. CLM+].: http://CEUR-WS.org, 523 (2009)
  43. 43.
    T. Groza, S. Handschuh, J.G. Breslin, S. Decker, Int. J. Virtual Comm. Social Networking (IJVCSN) 1, 37 (2009)CrossRefGoogle Scholar
  44. 44.
    T. Groza, S. Handschuh, K. Möller, S. Decker, The Semantic Web: Research and Applications (2007), p. 518Google Scholar
  45. 45.
    T. Groza, K. Möller, S. Handschuh, D. Trif, S. Decker, The Semantic Web (2007), p. 197Google Scholar
  46. 46.
    T. Groza, S. Handschuh, J.G. Breslin, In Web Intelligence and Intelligent Agent Technology, 2008. WI-IAT’08. IEEE/WIC/ACM International Conference on, vol. 1 IEEE (2008), p. 475Google Scholar
  47. 47.
    T. Groza, S. Handschuh, S. Decker, J. Data Semantics XV (2011), p. 1Google Scholar
  48. 48.
    P. Groth, A. Gibson, J. Velterop, Inf. Services Use 30, 51 (2010)Google Scholar
  49. 49.
    A.K. Agrawal, C. Catalini, A. Goldfarb, Technical report, National Bureau of Economic Research (2011)Google Scholar
  50. 50.
    S. Brown, Intellectual Property Magazine (2011)Google Scholar
  51. 51.
    Y. Wu, Res. Policy 39, 835 (2010)CrossRefGoogle Scholar
  52. 52.
    R.D. Putnam, Bowling alone (Simon & Schuster, 2001)Google Scholar
  53. 53.
    R.R. Nelson, S.G. Winter, An evolutionary theory of economic change (Belknap Press, 1982)Google Scholar
  54. 54.
    J.A. Schumpeter, The theory of economic development. an inquiry into profits, capital, credit, interest, and the business cycle. new brunswick (1934)Google Scholar
  55. 55.
    T. Buecheler, R.M. Füchslin, R. Pfeifer, manuscript available from the author (submitted) (2011)Google Scholar
  56. 56.
    P. Belleflamme, T. Lambert, A. Schwienbacher, available at SSRN 1578175 (2011/32) (2010)Google Scholar
  57. 57.
    B. Shneiderman. Science 319, 1349 (2008)CrossRefGoogle Scholar
  58. 58.
    X. Su, T.M. Khoshgoftaar, Adv. Artificial Intell. (2009)Google Scholar
  59. 59.
    A. Kittur, E.H. Chi, B. Suh, In Proceedings of the twenty-sixth annual SIGCHI conference on Human factors in computing systems ACM (2008), p. 453Google Scholar
  60. 60.
    A. Irwin, Citizen science: a study of people, expertise and sustainable development (Routledge, 1995)Google Scholar
  61. 61.
    D. Hull, S.R. Pettifer, D.B. Kell, PLoS Comput. Biol. 4, e1000204 (2008)CrossRefGoogle Scholar
  62. 62.
    A.H. Renear, C.L. Palmer, Science 325, 828 (2009)ADSCrossRefGoogle Scholar
  63. 63.
    C.L. Borgman, J. Amer. Soc. Inf. Sci. Technol. 63, 1059 (2012)CrossRefGoogle Scholar
  64. 64.
    S. Cincotti, D. Sornette, P. Treleaven, S. Battiston, G. Caldarelli, C. Hommes, Eur. Phys. J. Special Topics 214, 361 (2012)Google Scholar
  65. 65.
    M. Batty, et al., Eur. Phys. J. Special Topics 214, 481 (2012)Google Scholar
  66. 66.
    M. Ajmone-Marsan, D. Arrowsmith, W. Breymann, O. Fritz, M. Masera, A. Mengolini, D. Helbing, A. Carbone, Eur. Phys. J. Special Topics 214, 547 (2012)Google Scholar
  67. 67.
    A. Vespignani, et al., Eur. Phys. J. Special Topics 214, 347 (2012)Google Scholar
  68. 68.
    G. Deffuant, I. Alvarez, O. Barreteau, B. de Vries, B. Edmonds, N. Gilbert, N. Gotts, F. Jabot, A. Janssen, M. Hilden, O. Kolditz, D. Murray-Rust, Ch. Rougé, P. Smits, Eur. Phys. J. Special Topics 214, 519 (2012)Google Scholar
  69. 69.
    D. Helbing, Futurict – new science and technology to manage our complex, strongly connected world (2011)Google Scholar
  70. 70.
    D. Helbing, et al., Eur. Phys. J. Special Topics 214, 11 (2012)ADSGoogle Scholar
  71. 71.
    D. Helbing, Eur. Phys. J. Special Topics 214, 41 (2012)ADSGoogle Scholar
  72. 72.
    T.S. Kuhn, Selected Studies in Scientific Tradition and Change (University of Chicago Press, London, 1977), 1979Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • F. van Harmelen
    • 1
  • G. Kampis
    • 2
    • 3
  • K. Börner
    • 4
  • P. van den Besselaar
    • 5
  • E. Schultes
    • 6
    • 7
  • C. Goble
    • 8
  • P. Groth
    • 9
  • B. Mons
    • 7
    • 10
    • 11
    • 12
  • S. Anderson
    • 13
  • S. Decker
    • 14
  • C. Hayes
    • 14
  • T. Buecheler
    • 15
  • D. Helbing
    • 16
  1. 1.AI Department, Division of Mathematics and Computer Science, Faculty of SciencesVU University AmsterdamAmsterdamThe Netherlands
  2. 2.German Research Center for Artificial IntelligenceKaiserslauternGermany
  3. 3.Department of History and Philosophy of ScienceEötvös Lorand UniversityBudapestHungary
  4. 4.Cyberinfrastructure for Network Science Center, School of Library and Information ScienceIndiana UniversityBloomingtonUSA
  5. 5.Department of Organisation Sciences, Faculty of Social SciencesVU UniversityAmsterdamThe Netherlands
  6. 6.Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
  7. 7.Concept Web AllianceNijmegenThe Netherlands
  8. 8.Department of Computer ScienceUniversity of ManchesterManchesterUK
  9. 9.Knowledge Representation & Reasoning Group, Artificial Intelligence Section, Department of Computer ScienceVU University of AmsterdamAmsterdamThe Netherlands
  10. 10.Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
  11. 11.Netherlands Bioinformatics CenterNijmegenThe Netherlands
  12. 12.Department of Medical InformaticsErasmus Medical CenterRotterdamThe Netherlands
  13. 13.LFCS, School of InformaticsThe University of EdinburghEdinburghUK
  14. 14.Digital Enterprise Research Institute, NUIGalwayIreland
  15. 15.Artificial Intelligence Laboratory, Department of InformaticsUniversity of ZurichZurichSwitzerland
  16. 16.Chair of Sociology, in particular of Modeling and SimulationETH ZurichZurichSwitzerland

Personalised recommendations