Skip to main content

A planetary nervous system for social mining and collective awareness

Abstract

We present a research roadmap of a Planetary Nervous System (PNS), capable of sensing and mining the digital breadcrumbs of human activities and unveiling the knowledge hidden in the big data for addressing the big questions about social complexity. We envision the PNS as a globally distributed, self-organizing, techno-social system for answering analytical questions about the status of world-wide society, based on three pillars: social sensing, social mining and the idea of trust networks and privacy-aware social mining. We discuss the ingredients of a science and a technology necessary to build the PNS upon the three mentioned pillars, beyond the limitations of their respective state-of-art. Social sensing is aimed at developing better methods for harvesting the big data from the techno-social ecosystem and make them available for mining, learning and analysis at a properly high abstraction level. Social mining is the problem of discovering patterns and models of human behaviour from the sensed data across the various social dimensions by data mining, machine learning and social network analysis. Trusted networks and privacy-aware social mining is aimed at creating a new deal around the questions of privacy and data ownership empowering individual persons with full awareness and control on own personal data, so that users may allow access and use of their data for their own good and the common good. The PNS will provide a goal-oriented knowledge discovery framework, made of technology and people, able to configure itself to the aim of answering questions about the pulse of global society. Given an analytical request, the PNS activates a process composed by a variety of interconnected tasks exploiting the social sensing and mining methods within the transparent ecosystem provided by the trusted network. The PNS we foresee is the key tool for individual and collective awareness for the knowledge society. We need such a tool for everyone to become fully aware of how powerful is the knowledge of our society we can achieve by leveraging our wisdom as a crowd, and how important is that everybody participates both as a consumer and as a producer of the social knowledge, for it to become a trustable, accessible, safe and useful public good.

Graphical abstract

References

  1. 1.

    A. Pentland, IEEE Computer 45, 31 (2012)

    Article  Google Scholar 

  2. 2.

    The Economist, Data, Data Everywhere. Special Report, February 25, 2010

  3. 3.

    Personal Data: The Emergence of a New Asset Class. World EconomicForum, 2011. http://www3.weforum.org/docs/WEF_ITTC_PersonalDataNewAsset_Report_2011.pdf

  4. 4.

    Technology Review 2008, 10 Emerging Technologies That Will Change the World, Available at http://www.technologyreview.com/article/13060/

  5. 5.

    A. Pentland, Global Information Technology Report 2008–2009, World Economic Forum, p. 75

  6. 6.

    D. Lazer, A. Pentland, et al., Science 323, 721 (2009)

    Article  Google Scholar 

  7. 7.

    C. Parent, S. Spaccapietra, C. Renso, G. Andrienko, N. Andrienko, V. Bogorny, M. Damiani, A. Gkoulalas-Divanis, J. Macedo, N. Pelekis, Y. Theodoridis, Z. Yan, Semantic Trajectories Modeling and Analysis, ACM Computing Surveys (to appear)

  8. 8.

    D. Janssens, Existing challenges in travel behavior analysis and modeling solved from the perspective of large datasets: a take-off in the DATASIM project, TRB 91st Annual Meeting, 2012

  9. 9.

    Y. Min, Y. Yingxiang, W. Wei, C, Jian, D. Haoyang, Multiagent-Based Simulation of Temporal-Spatial Characteristics of Activity-Travel Patterns Using Interactive Reinforcement Learning, TRB 2012

  10. 10.

    D. He, A. Goker, Detecting session boundaries from web user logs, in Proc. of BCS-IRSG’00, p. 57

  11. 11.

    C. Lucchese, S. Orlando, R. Perego, F. Silvestri, G. Tolomei, Identifying task-based sessions in search-engines query logs. WSDM 2011, 277-286, ACM

  12. 12.

    G. De Francisci Morales, A. Gionis, and C. Lucchese,From chatter to headlines: harnessing the real-time web for personalized news recommendation, in Proceedings of the fifth ACM international conference on Web search and data mining WSDM 2012

  13. 13.

    O. Etzioni, M. Banko, M.J. Cafarella, AAAI 2006, 1517

  14. 14.

    M. Banko, M.J. Cafarella, S. Soderland, M. Broadhead, O. Etzioni, Open information extraction from the web, in IJCAI 2007

  15. 15.

    M. Banko, O. Etzioni, The tradeoffs between open and traditional relation extraction, In the Forty Sixth Annual Meeting of the Ass. for Computational Linguistics, 2008

  16. 16.

    T.M. Mitchell, J. Betteridge, A. Carlson, E.R. Hruschka Jr., R.C. Wang, Populating the Semantic Web by Macro-Reading Internet Text, in ISWC 2009

  17. 17.

    H. Poon, P. Domingos, Machine Reading: A Killer App’ for Statistical Relational AI, in AAAI-2010 Workshop on Statistical Relational Artificial Intelligence

  18. 18.

    R. Navigli, P. Velardi, S. Faralli, A Graph-based Algorithm for Inducing Lexical Taxonomies from Scratch, In IJCAI 2011

  19. 19.

    M. Tsytsarau, T. Palpanas, PhD Forum ICDM, 2011

  20. 20.

    Jerald Jariyasunant, et al., The Quantified Traveler: Using Personal Travel Data to Promote Sustainable Transport Behavior, TRB 2012

  21. 21.

    L. Wu, B.N. Waber, S. Aral, E. Brynjolfsson, A. Pentland, Mining Face-to-Face Interaction Networks using Sociometric Badges: Predicting Productivity in an IT Configuration Task, in Proceedings of the International Conference on Information Systems, Paris, France, December 14–17, 2008

  22. 22.

    A.J. Quinn, B.B. Bederson, Proceedings of the 2011 annual conference on Human Factors in Computing Systems, CHI’11 (2011), p. 1403

  23. 23.

    J. Howe, Wired 14 (6) (2006)

  24. 24.

    L. von Ahn, Computer 39, 92 (2006)

    Article  Google Scholar 

  25. 25.

    E. Law, L. von Ahn, Input-agreement: a new mechanism for collecting data using human computation games, CHI 2009, 1197

  26. 26.

    M.J. Franklin, et al., Proceedings of the 2011 international conference on Management of data (SIGMOD ’11), ACM, New York, NY, USA, 61

  27. 27.

    A. Marcus, et al., Crowdsourced Databases: Query Processing with People, Conference on Innovative Data Systems Research. 2011 (Asilomar, CA, 2011), 211

  28. 28.

    A. Parameswaran, N. Polyzotis, Answering Queries using Databases, Humans and Algorithms, Conference on Innovative Data Systems Research 2011 (Asilomar, CA, 2011), p. 160

  29. 29.

    D. Helbing, W. Yu, PNAS 106, 3680 (2009)

    ADS  Article  Google Scholar 

  30. 30.

    J.C. Tang, M. Cebrin, N.A. Giacobe, H.-W. Kim, T. Kim, D. Wickert, Commun. ACM 54, 78 (2011)

    Article  Google Scholar 

  31. 31.

    S.B. Shum, et al., Eur. Phys. J. Special Topics 214, 109 (2012)

    Google Scholar 

  32. 32.

    P.-N. Tan, Michael Steinbach, Vipin Kumar. Introduction to Data Mining (Addison Wesley, 2006)

  33. 33.

    T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition (Springer Series in Statistics, 2009)

  34. 34.

    D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    ADS  Article  Google Scholar 

  35. 35.

    A.L. Barabasi, R. Albert, Science 286, 509 (1999)

    MathSciNet  ADS  Article  Google Scholar 

  36. 36.

    G. Caldarelli, Scale free networks (Oxford University Press)

  37. 37.

    M.E.J. Newman, Networks: An Introduction (Oxford University Press, 2010)

  38. 38.

    D. Easley, J. Kleinberg, Networks, Crowds, and Markets: Reasoning About a Highly Connected World (Cambridge University Press, 2010)

  39. 39.

    S. Fortunato, Physics Report 486, 75 (2010)

    MathSciNet  ADS  Article  Google Scholar 

  40. 40.

    M. Coscia, F. Giannotti, D. Pedreschi, Stat. Anal. Data Mining 4, 512 (2011)

    MathSciNet  Article  Google Scholar 

  41. 41.

    J. Kleinberg, Nature 406, 845 (2000)

    ADS  Article  Google Scholar 

  42. 42.

    D. Kempe, J. Kleinberg, E. Tardös, Maximizing the spread of influence through a social network, in Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining (KDD ’03), ACM, New York, NY, USA, 137

  43. 43.

    R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 86, 3200 (2001)

    ADS  Article  Google Scholar 

  44. 44.

    M.J. Keeling, K.T.D. Eames, J. Royal Soc. Interface, 2005

  45. 45.

    D. Liben-Nowell, J. Kleinberg, In CIKM, 2003

  46. 46.

    H. Kashima, T. Kato, Yoshihiro Yamanishi, M. Sugiyama, K. Tsuda, In SIAM, 2009

  47. 47.

    J. Leskovec, D. Huttenlocher, J. Kleinberg, Predicting positive and negative links in online social networks, In WWW, 2010

  48. 48.

    J. Leskovec, J. Kleinberg, C. Faloutsos, Graphs over time: densification laws, shrinking diameters and possible explanations, in Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining (KDD ’05), ACM, New York, NY, USA, 177, 2005

  49. 49.

    P. Holme, J. Saramaki, Temporal Networks [eprint arXiv:1108.1780]

  50. 50.

    P.J. Mucha, T. Richardson, K. Macon, M.A. Porter, J.-P. Onnela, Science 328, 876 (2010)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  51. 51.

    M. Berlingerio, M. Coscia, F. Giannotti, A. Monreale, D. Pedreschi, As Time Goes by: Discovering Eras in Evolving Social Networks, PAKDD 2010

  52. 52.

    B. Bringmann, M. Berlingerio, F. Bonchi, A. Gionis, Learning and Predicting the Evolution of Social Networks, IEEE Intelligent Systems (EXPERT), 2010

  53. 53.

    G. Jianxi, B. Sergey, V.S.H. Eugene, S. Havlin, Nat. Phys. 8, 40 (2012)

    Google Scholar 

  54. 54.

    M. Berlingerio, M. Coscia, F. Giannotti, A. Monreale, D. Pedreschi, Multidimensional Networks: Foundations of Structural Analysis, WWW Journal (2012) (to appear) doi: 10.1007/s11280-012-0190-4

  55. 55.

    L. Tang, H. Liu, Relational learning via latent social dimensions, In KDD 2009

  56. 56.

    B. Pang, L. Lee, Found. Trends Inf. Retrieval 2, 1 (2008)

    Article  Google Scholar 

  57. 57.

    A. Esuli, F. Sebastiani, Int. J. Market Res. 52, 775 (2010)

    Article  Google Scholar 

  58. 58.

    D. Brockmann, L. Hufnagel, T. Geisel, Nature 439, 462 (2006)

    ADS  Article  Google Scholar 

  59. 59.

    M.C. Gonzalez, C.A. Hidalgo, A.L. Barabási, Nature 454, 779 (2008)

    ADS  Article  Google Scholar 

  60. 60.

    C. Song, T. Koren, P. Wang, A.L. Barabasi, Modelling the scaling properties of human mobility, Nature Physics (2010)

  61. 61.

    M. Moussad, D. Helbing, G. Theraulaz, Proc. Nat. Acad. Sci. USA (PNAS) 108, 6884 (2011)

    ADS  Article  Google Scholar 

  62. 62.

    F. GiannottiD. Pedreschi, Mobility, Data Mining and Privacy (Springer, 2008)

  63. 63.

    R. Trasarti, F. Pinelli, M. Nanni, F. Giannotti, Mining mobility user profiles for car pooling, Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2011, 1190

  64. 64.

    F. Giannotti, M. Nanni, F. Pinelli, D. Pedreschi, Trajectory pattern mining, Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2007, 330

  65. 65.

    F. Giannotti, M. Nanni, D. Pedreschi, F. Pinelli, C. Renso, S. Rinzivillo, R. Trasarti, VLDB J. 20, 695 (2011)

    Article  Google Scholar 

  66. 66.

    D. Wang, D. Pedreschi, C. Song, F. Giannotti, A.L. Barabási, Human Mobility, Social Ties, and Link Prediction, Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2011, 1100

  67. 67.

    L. Ferrari, M. Mamei, Classification and prediction of whereabouts patterns from reality mining dataset, Pervasive and Mobile Computing, Available online 25 April 2012

  68. 68.

    S. Jiang, J. Ferreira, M.C. González, Data Mining Knowledge Discovery 25, 478 (2012)

    Article  Google Scholar 

  69. 69.

    P. Samarati, L. Sweeney, Generalizing Data to Provide Anonymity when Disclosing Information, PODS 1998, 188

  70. 70.

    A. Zimmermann, S. Schonfelder, G. Rindsfuser, T. Haupt, Transportation 29, 95 (2002)

    Article  Google Scholar 

  71. 71.

    M.M. Gaber, A. Zaslavsky, S. Krishnaswamy, Mining data streams: a review, SIGMOD Rec. 34, 2 (June 2005)

  72. 72.

    The New York Times, A Face Is Exposed for AOL Searcher No. 4417749. August 9, 2006. http://www.nytimes.com/2006/08/09/technology/09aol.html

  73. 73.

    L. Sweeney, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10, 571 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  74. 74.

    C.C. Aggarwal, P.S. Yu, Privacy-Preserving Data Mining Models and Algorithms, The Kluwer International series on advances in database systems, vol. 34 (2008)

  75. 75.

    F. Bonchi, E. Ferrari, Privacy-Aware Knowledge Discovery: Novel Applications and New Techniques, Chapman & Hall/CRC Data Mining and Knowledge Discovery Series, Taylor & Francis LLC 2010

  76. 76.

    A. Machanavajjhala, D. Kifer, J. Gehrke, M. Venkitasubramaniam, l-diversity: Privacy beyond k-anonymity, in Proceedings of the International Conference on Data Engineering (ICDE) (2006)

  77. 77.

    P. Samarati, IEEE Trans. Knowledge Data Eng. (TKDE) 13, 1010 (2001)

    Article  Google Scholar 

  78. 78.

    X. Xiao, Y. Tao, Anatomy: simple and effective privacy preservation, in Proceedings of the International Conference on Very Large Data Bases (VLDB), 139 (2006)

  79. 79.

    B.C.M. Fung, K. Wang, P.S. Yu, IEEE Trans. Knowledge Data Eng. 19, 711 (2007)

    Article  Google Scholar 

  80. 80.

    W.K. Wong, D.W. Cheung, E. Hung, B. Kao, N. Mamoulis, Security in outsourcing of association rule mining, in VLDB (2007), p. 111122

  81. 81.

    M. Atzori, F. Bonchi, F. Giannotti, D. Pedreschi, Int. J. Very Large Data Bases (VLDB) 17, 703 (2008)

    Article  Google Scholar 

  82. 82.

    V.S. Verykios, A.K. Elmagarmid, E. Bertino, Y. Saygin, E. Dasseni, IEEE Trans. Knowledge Data Eng. (TKDE) 16, 434 (2004)

    Article  Google Scholar 

  83. 83.

    M. KantarciogluC. Clifton, IEEE Trans. Knowledge Data Eng. (TKDE), 16, 1026 (2004)

    Article  Google Scholar 

  84. 84.

    B. Gilburd, A. Schuste, R. Wolff, k-ttp: A new privacy model for large scale distributed environments, in Proceedings of the International Conference on Very Large Data Bases (VLDB), 563 (2005)

  85. 85.

    A. Monreale, Privacy by Design in Data Mining, Ph.D. thesis, University of Pisa, 2011

  86. 86.

    F. Giannotti, L.V.S. Lakshmanan, A. Monreale, D. Pedreschi, and H. Wang. Privacy-preserving data mining from outsourced databases. Computers, Privacy and Data Protection: an Element of Choice, Part 4 (Springer, 2011), p. 411

  87. 87.

    C. Dwork, F. McSherry, K. Nissim, A. Smith. Calibrating noise to sensitivity in private data analysis. In Shai Halevi and Tal Rabin, editors, Theory of Cryptography, Third Theory of Cryptography Conference, TCC 2006, vol. 3876 of Lecture Notes in Computer Science (Springer, 2006), p. 265284

  88. 88.

    C. Dwork, Differential privacy, In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors, Automata, Languages and Programming, 33rd International Colloquium, ICALP 2006, Part II, vol. 4052 of Lecture Notes in Computer Science (Springer, 2006), p. 112

  89. 89.

    Website of the Commission on the Measurement of Economic Performance and Social Progress, http://www.stiglitz-sen-fitoussi.fr/

  90. 90.

    A. Monreale, et al., Trans. Data Privacy 3, 91 (2010)

    MathSciNet  Google Scholar 

  91. 91.

    Stiglitz and Sens Manifesto on Measuring Economic Performance and Social Progress, http://www.worldchanging.com/archives/010627.html

  92. 92.

    J.V. Henderson, A. Storeygard, D. N. Weil, NBER Working Paper No. w15199 (2009)

  93. 93.

    D. Helbing, S. Balietti, Eur. Phys. J. Special Topics 195, 101 (2011)

    ADS  Article  Google Scholar 

  94. 94.

    J.V. Henderson, A. Storeygard, D. N. Weil, NBER Working Paper No. w15199 (2009)

  95. 95.

    Planetary Skin Institute, http://www.planetaryskin.org/

  96. 96.

    P.S. Dodds, C.M. Danforth, J. Happiness Studies 11, 444 (2010)

    Google Scholar 

  97. 97.

    S. Golder, M.W. Macy, Science 333, 1878 (2011)

    ADS  Article  Google Scholar 

  98. 98.

    Digital Earth project, http://www.digitalearth-isde.org/

  99. 99.

    Digital Earth project, http://www.digitalearth-isde.org/

  100. 100.

    D. Helbing, et al., Eur. Phys. J. Special Topics 214, 41 (2012)

    ADS  Google Scholar 

  101. 101.

    R. Conte, et al., Eur. Phys. J. Special Topics 214, 325 (2012)

    Google Scholar 

  102. 102.

    L.E. Cederman, et al., Eur. Phys. J. Special Topics 214, 347 (2012)

    Google Scholar 

  103. 103.

    S. Cincotti, et al., Eur. Phys. J. Special Topics 214, 361 (2012)

    Google Scholar 

  104. 104.

    M. Batty, et al., Eur. Phys. J. Special Topics 214, 481 (2012)

    Google Scholar 

  105. 105.

    S. Buckingham Shum, et al., Eur. Phys. J. Special Topics 214, 109 (2012)

    Google Scholar 

  106. 106.

    D. Kossman, et al., Eur. Phys. J. Special Topics 214, 77 (2012)

    Google Scholar 

  107. 107.

    M. San Miguel, et al., Eur. Phys. J. Special Topics 214, 245 (2012)

    Google Scholar 

  108. 108.

    S. Havlin, et al., Eur. Phys. J. Special Topics 214, 273 (2012)

    Google Scholar 

  109. 109.

    J. van den Hoven, et al., Eur. Phys. J. Special Topics 214, 153 (2012)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to F. Giannotti, D. Pedreschi, A. Pentland, P. Lukowicz, D. Kossmann, J. Crowley or D. Helbing.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Giannotti, F., Pedreschi, D., Pentland, A. et al. A planetary nervous system for social mining and collective awareness. Eur. Phys. J. Spec. Top. 214, 49–75 (2012). https://doi.org/10.1140/epjst/e2012-01688-9

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2012-01688-9

Keywords

  • European Physical Journal Special Topic
  • Personal Data
  • World Economic Forum
  • Complex World
  • Trust Network