The European Physical Journal Special Topics

, Volume 214, Issue 1, pp 49–75 | Cite as

A planetary nervous system for social mining and collective awareness

Open Access
Regular Article

Abstract

We present a research roadmap of a Planetary Nervous System (PNS), capable of sensing and mining the digital breadcrumbs of human activities and unveiling the knowledge hidden in the big data for addressing the big questions about social complexity. We envision the PNS as a globally distributed, self-organizing, techno-social system for answering analytical questions about the status of world-wide society, based on three pillars: social sensing, social mining and the idea of trust networks and privacy-aware social mining. We discuss the ingredients of a science and a technology necessary to build the PNS upon the three mentioned pillars, beyond the limitations of their respective state-of-art. Social sensing is aimed at developing better methods for harvesting the big data from the techno-social ecosystem and make them available for mining, learning and analysis at a properly high abstraction level. Social mining is the problem of discovering patterns and models of human behaviour from the sensed data across the various social dimensions by data mining, machine learning and social network analysis. Trusted networks and privacy-aware social mining is aimed at creating a new deal around the questions of privacy and data ownership empowering individual persons with full awareness and control on own personal data, so that users may allow access and use of their data for their own good and the common good. The PNS will provide a goal-oriented knowledge discovery framework, made of technology and people, able to configure itself to the aim of answering questions about the pulse of global society. Given an analytical request, the PNS activates a process composed by a variety of interconnected tasks exploiting the social sensing and mining methods within the transparent ecosystem provided by the trusted network. The PNS we foresee is the key tool for individual and collective awareness for the knowledge society. We need such a tool for everyone to become fully aware of how powerful is the knowledge of our society we can achieve by leveraging our wisdom as a crowd, and how important is that everybody participates both as a consumer and as a producer of the social knowledge, for it to become a trustable, accessible, safe and useful public good.

Graphical abstract

References

  1. 1.
    A. Pentland, IEEE Computer 45, 31 (2012)CrossRefGoogle Scholar
  2. 2.
    The Economist, Data, Data Everywhere. Special Report, February 25, 2010Google Scholar
  3. 3.
    Personal Data: The Emergence of a New Asset Class. World EconomicForum, 2011. http://www3.weforum.org/docs/WEF_ITTC_PersonalDataNewAsset_Report_2011.pdf
  4. 4.
    Technology Review 2008, 10 Emerging Technologies That Will Change the World, Available at http://www.technologyreview.com/article/13060/
  5. 5.
    A. Pentland, Global Information Technology Report 2008–2009, World Economic Forum, p. 75Google Scholar
  6. 6.
    D. Lazer, A. Pentland, et al., Science 323, 721 (2009)CrossRefGoogle Scholar
  7. 7.
    C. Parent, S. Spaccapietra, C. Renso, G. Andrienko, N. Andrienko, V. Bogorny, M. Damiani, A. Gkoulalas-Divanis, J. Macedo, N. Pelekis, Y. Theodoridis, Z. Yan, Semantic Trajectories Modeling and Analysis, ACM Computing Surveys (to appear)Google Scholar
  8. 8.
    D. Janssens, Existing challenges in travel behavior analysis and modeling solved from the perspective of large datasets: a take-off in the DATASIM project, TRB 91st Annual Meeting, 2012Google Scholar
  9. 9.
    Y. Min, Y. Yingxiang, W. Wei, C, Jian, D. Haoyang, Multiagent-Based Simulation of Temporal-Spatial Characteristics of Activity-Travel Patterns Using Interactive Reinforcement Learning, TRB 2012Google Scholar
  10. 10.
    D. He, A. Goker, Detecting session boundaries from web user logs, in Proc. of BCS-IRSG’00, p. 57Google Scholar
  11. 11.
    C. Lucchese, S. Orlando, R. Perego, F. Silvestri, G. Tolomei, Identifying task-based sessions in search-engines query logs. WSDM 2011, 277-286, ACMGoogle Scholar
  12. 12.
    G. De Francisci Morales, A. Gionis, and C. Lucchese,From chatter to headlines: harnessing the real-time web for personalized news recommendation, in Proceedings of the fifth ACM international conference on Web search and data mining WSDM 2012Google Scholar
  13. 13.
    O. Etzioni, M. Banko, M.J. Cafarella, AAAI 2006, 1517Google Scholar
  14. 14.
    M. Banko, M.J. Cafarella, S. Soderland, M. Broadhead, O. Etzioni, Open information extraction from the web, in IJCAI 2007Google Scholar
  15. 15.
    M. Banko, O. Etzioni, The tradeoffs between open and traditional relation extraction, In the Forty Sixth Annual Meeting of the Ass. for Computational Linguistics, 2008Google Scholar
  16. 16.
    T.M. Mitchell, J. Betteridge, A. Carlson, E.R. Hruschka Jr., R.C. Wang, Populating the Semantic Web by Macro-Reading Internet Text, in ISWC 2009Google Scholar
  17. 17.
    H. Poon, P. Domingos, Machine Reading: A Killer App’ for Statistical Relational AI, in AAAI-2010 Workshop on Statistical Relational Artificial IntelligenceGoogle Scholar
  18. 18.
    R. Navigli, P. Velardi, S. Faralli, A Graph-based Algorithm for Inducing Lexical Taxonomies from Scratch, In IJCAI 2011Google Scholar
  19. 19.
    M. Tsytsarau, T. Palpanas, PhD Forum ICDM, 2011Google Scholar
  20. 20.
    Jerald Jariyasunant, et al., The Quantified Traveler: Using Personal Travel Data to Promote Sustainable Transport Behavior, TRB 2012Google Scholar
  21. 21.
    L. Wu, B.N. Waber, S. Aral, E. Brynjolfsson, A. Pentland, Mining Face-to-Face Interaction Networks using Sociometric Badges: Predicting Productivity in an IT Configuration Task, in Proceedings of the International Conference on Information Systems, Paris, France, December 14–17, 2008Google Scholar
  22. 22.
    A.J. Quinn, B.B. Bederson, Proceedings of the 2011 annual conference on Human Factors in Computing Systems, CHI’11 (2011), p. 1403Google Scholar
  23. 23.
    J. Howe, Wired 14 (6) (2006)Google Scholar
  24. 24.
    L. von Ahn, Computer 39, 92 (2006)CrossRefGoogle Scholar
  25. 25.
    E. Law, L. von Ahn, Input-agreement: a new mechanism for collecting data using human computation games, CHI 2009, 1197Google Scholar
  26. 26.
    M.J. Franklin, et al., Proceedings of the 2011 international conference on Management of data (SIGMOD ’11), ACM, New York, NY, USA, 61Google Scholar
  27. 27.
    A. Marcus, et al., Crowdsourced Databases: Query Processing with People, Conference on Innovative Data Systems Research. 2011 (Asilomar, CA, 2011), 211Google Scholar
  28. 28.
    A. Parameswaran, N. Polyzotis, Answering Queries using Databases, Humans and Algorithms, Conference on Innovative Data Systems Research 2011 (Asilomar, CA, 2011), p. 160Google Scholar
  29. 29.
    D. Helbing, W. Yu, PNAS 106, 3680 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    J.C. Tang, M. Cebrin, N.A. Giacobe, H.-W. Kim, T. Kim, D. Wickert, Commun. ACM 54, 78 (2011)CrossRefGoogle Scholar
  31. 31.
    S.B. Shum, et al., Eur. Phys. J. Special Topics 214, 109 (2012)Google Scholar
  32. 32.
    P.-N. Tan, Michael Steinbach, Vipin Kumar. Introduction to Data Mining (Addison Wesley, 2006)Google Scholar
  33. 33.
    T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition (Springer Series in Statistics, 2009)Google Scholar
  34. 34.
    D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    A.L. Barabasi, R. Albert, Science 286, 509 (1999)MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    G. Caldarelli, Scale free networks (Oxford University Press)Google Scholar
  37. 37.
    M.E.J. Newman, Networks: An Introduction (Oxford University Press, 2010)Google Scholar
  38. 38.
    D. Easley, J. Kleinberg, Networks, Crowds, and Markets: Reasoning About a Highly Connected World (Cambridge University Press, 2010)Google Scholar
  39. 39.
    S. Fortunato, Physics Report 486, 75 (2010)MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    M. Coscia, F. Giannotti, D. Pedreschi, Stat. Anal. Data Mining 4, 512 (2011)MathSciNetCrossRefGoogle Scholar
  41. 41.
    J. Kleinberg, Nature 406, 845 (2000)ADSCrossRefGoogle Scholar
  42. 42.
    D. Kempe, J. Kleinberg, E. Tardös, Maximizing the spread of influence through a social network, in Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining (KDD ’03), ACM, New York, NY, USA, 137Google Scholar
  43. 43.
    R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 86, 3200 (2001)ADSCrossRefGoogle Scholar
  44. 44.
    M.J. Keeling, K.T.D. Eames, J. Royal Soc. Interface, 2005Google Scholar
  45. 45.
    D. Liben-Nowell, J. Kleinberg, In CIKM, 2003Google Scholar
  46. 46.
    H. Kashima, T. Kato, Yoshihiro Yamanishi, M. Sugiyama, K. Tsuda, In SIAM, 2009Google Scholar
  47. 47.
    J. Leskovec, D. Huttenlocher, J. Kleinberg, Predicting positive and negative links in online social networks, In WWW, 2010Google Scholar
  48. 48.
    J. Leskovec, J. Kleinberg, C. Faloutsos, Graphs over time: densification laws, shrinking diameters and possible explanations, in Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining (KDD ’05), ACM, New York, NY, USA, 177, 2005Google Scholar
  49. 49.
    P. Holme, J. Saramaki, Temporal Networks [eprint arXiv:1108.1780]Google Scholar
  50. 50.
    P.J. Mucha, T. Richardson, K. Macon, M.A. Porter, J.-P. Onnela, Science 328, 876 (2010)MathSciNetADSMATHCrossRefGoogle Scholar
  51. 51.
    M. Berlingerio, M. Coscia, F. Giannotti, A. Monreale, D. Pedreschi, As Time Goes by: Discovering Eras in Evolving Social Networks, PAKDD 2010Google Scholar
  52. 52.
    B. Bringmann, M. Berlingerio, F. Bonchi, A. Gionis, Learning and Predicting the Evolution of Social Networks, IEEE Intelligent Systems (EXPERT), 2010Google Scholar
  53. 53.
    G. Jianxi, B. Sergey, V.S.H. Eugene, S. Havlin, Nat. Phys. 8, 40 (2012)Google Scholar
  54. 54.
    M. Berlingerio, M. Coscia, F. Giannotti, A. Monreale, D. Pedreschi, Multidimensional Networks: Foundations of Structural Analysis, WWW Journal (2012) (to appear) doi: 10.1007/s11280-012-0190-4
  55. 55.
    L. Tang, H. Liu, Relational learning via latent social dimensions, In KDD 2009Google Scholar
  56. 56.
    B. Pang, L. Lee, Found. Trends Inf. Retrieval 2, 1 (2008)CrossRefGoogle Scholar
  57. 57.
    A. Esuli, F. Sebastiani, Int. J. Market Res. 52, 775 (2010)CrossRefGoogle Scholar
  58. 58.
    D. Brockmann, L. Hufnagel, T. Geisel, Nature 439, 462 (2006)ADSCrossRefGoogle Scholar
  59. 59.
    M.C. Gonzalez, C.A. Hidalgo, A.L. Barabási, Nature 454, 779 (2008)ADSCrossRefGoogle Scholar
  60. 60.
    C. Song, T. Koren, P. Wang, A.L. Barabasi, Modelling the scaling properties of human mobility, Nature Physics (2010)Google Scholar
  61. 61.
    M. Moussad, D. Helbing, G. Theraulaz, Proc. Nat. Acad. Sci. USA (PNAS) 108, 6884 (2011)ADSCrossRefGoogle Scholar
  62. 62.
    F. GiannottiD. Pedreschi, Mobility, Data Mining and Privacy (Springer, 2008)Google Scholar
  63. 63.
    R. Trasarti, F. Pinelli, M. Nanni, F. Giannotti, Mining mobility user profiles for car pooling, Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2011, 1190Google Scholar
  64. 64.
    F. Giannotti, M. Nanni, F. Pinelli, D. Pedreschi, Trajectory pattern mining, Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2007, 330Google Scholar
  65. 65.
    F. Giannotti, M. Nanni, D. Pedreschi, F. Pinelli, C. Renso, S. Rinzivillo, R. Trasarti, VLDB J. 20, 695 (2011)CrossRefGoogle Scholar
  66. 66.
    D. Wang, D. Pedreschi, C. Song, F. Giannotti, A.L. Barabási, Human Mobility, Social Ties, and Link Prediction, Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2011, 1100Google Scholar
  67. 67.
    L. Ferrari, M. Mamei, Classification and prediction of whereabouts patterns from reality mining dataset, Pervasive and Mobile Computing, Available online 25 April 2012Google Scholar
  68. 68.
    S. Jiang, J. Ferreira, M.C. González, Data Mining Knowledge Discovery 25, 478 (2012)CrossRefGoogle Scholar
  69. 69.
    P. Samarati, L. Sweeney, Generalizing Data to Provide Anonymity when Disclosing Information, PODS 1998, 188Google Scholar
  70. 70.
    A. Zimmermann, S. Schonfelder, G. Rindsfuser, T. Haupt, Transportation 29, 95 (2002)CrossRefGoogle Scholar
  71. 71.
    M.M. Gaber, A. Zaslavsky, S. Krishnaswamy, Mining data streams: a review, SIGMOD Rec. 34, 2 (June 2005)Google Scholar
  72. 72.
    The New York Times, A Face Is Exposed for AOL Searcher No. 4417749. August 9, 2006. http://www.nytimes.com/2006/08/09/technology/09aol.html
  73. 73.
    L. Sweeney, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10, 571 (2002)MathSciNetMATHCrossRefGoogle Scholar
  74. 74.
    C.C. Aggarwal, P.S. Yu, Privacy-Preserving Data Mining Models and Algorithms, The Kluwer International series on advances in database systems, vol. 34 (2008)Google Scholar
  75. 75.
    F. Bonchi, E. Ferrari, Privacy-Aware Knowledge Discovery: Novel Applications and New Techniques, Chapman & Hall/CRC Data Mining and Knowledge Discovery Series, Taylor & Francis LLC 2010Google Scholar
  76. 76.
    A. Machanavajjhala, D. Kifer, J. Gehrke, M. Venkitasubramaniam, l-diversity: Privacy beyond k-anonymity, in Proceedings of the International Conference on Data Engineering (ICDE) (2006)Google Scholar
  77. 77.
    P. Samarati, IEEE Trans. Knowledge Data Eng. (TKDE) 13, 1010 (2001)CrossRefGoogle Scholar
  78. 78.
    X. Xiao, Y. Tao, Anatomy: simple and effective privacy preservation, in Proceedings of the International Conference on Very Large Data Bases (VLDB), 139 (2006)Google Scholar
  79. 79.
    B.C.M. Fung, K. Wang, P.S. Yu, IEEE Trans. Knowledge Data Eng. 19, 711 (2007)CrossRefGoogle Scholar
  80. 80.
    W.K. Wong, D.W. Cheung, E. Hung, B. Kao, N. Mamoulis, Security in outsourcing of association rule mining, in VLDB (2007), p. 111122Google Scholar
  81. 81.
    M. Atzori, F. Bonchi, F. Giannotti, D. Pedreschi, Int. J. Very Large Data Bases (VLDB) 17, 703 (2008)CrossRefGoogle Scholar
  82. 82.
    V.S. Verykios, A.K. Elmagarmid, E. Bertino, Y. Saygin, E. Dasseni, IEEE Trans. Knowledge Data Eng. (TKDE) 16, 434 (2004)CrossRefGoogle Scholar
  83. 83.
    M. KantarciogluC. Clifton, IEEE Trans. Knowledge Data Eng. (TKDE), 16, 1026 (2004)CrossRefGoogle Scholar
  84. 84.
    B. Gilburd, A. Schuste, R. Wolff, k-ttp: A new privacy model for large scale distributed environments, in Proceedings of the International Conference on Very Large Data Bases (VLDB), 563 (2005)Google Scholar
  85. 85.
    A. Monreale, Privacy by Design in Data Mining, Ph.D. thesis, University of Pisa, 2011Google Scholar
  86. 86.
    F. Giannotti, L.V.S. Lakshmanan, A. Monreale, D. Pedreschi, and H. Wang. Privacy-preserving data mining from outsourced databases. Computers, Privacy and Data Protection: an Element of Choice, Part 4 (Springer, 2011), p. 411Google Scholar
  87. 87.
    C. Dwork, F. McSherry, K. Nissim, A. Smith. Calibrating noise to sensitivity in private data analysis. In Shai Halevi and Tal Rabin, editors, Theory of Cryptography, Third Theory of Cryptography Conference, TCC 2006, vol. 3876 of Lecture Notes in Computer Science (Springer, 2006), p. 265284Google Scholar
  88. 88.
    C. Dwork, Differential privacy, In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors, Automata, Languages and Programming, 33rd International Colloquium, ICALP 2006, Part II, vol. 4052 of Lecture Notes in Computer Science (Springer, 2006), p. 112Google Scholar
  89. 89.
    Website of the Commission on the Measurement of Economic Performance and Social Progress, http://www.stiglitz-sen-fitoussi.fr/
  90. 90.
    A. Monreale, et al., Trans. Data Privacy 3, 91 (2010)MathSciNetGoogle Scholar
  91. 91.
    Stiglitz and Sens Manifesto on Measuring Economic Performance and Social Progress, http://www.worldchanging.com/archives/010627.html
  92. 92.
    J.V. Henderson, A. Storeygard, D. N. Weil, NBER Working Paper No. w15199 (2009)Google Scholar
  93. 93.
    D. Helbing, S. Balietti, Eur. Phys. J. Special Topics 195, 101 (2011)ADSCrossRefGoogle Scholar
  94. 94.
    J.V. Henderson, A. Storeygard, D. N. Weil, NBER Working Paper No. w15199 (2009)Google Scholar
  95. 95.
    Planetary Skin Institute, http://www.planetaryskin.org/
  96. 96.
    P.S. Dodds, C.M. Danforth, J. Happiness Studies 11, 444 (2010)Google Scholar
  97. 97.
    S. Golder, M.W. Macy, Science 333, 1878 (2011)ADSCrossRefGoogle Scholar
  98. 98.
    Digital Earth project, http://www.digitalearth-isde.org/
  99. 99.
    Digital Earth project, http://www.digitalearth-isde.org/
  100. 100.
    D. Helbing, et al., Eur. Phys. J. Special Topics 214, 41 (2012)ADSGoogle Scholar
  101. 101.
    R. Conte, et al., Eur. Phys. J. Special Topics 214, 325 (2012)Google Scholar
  102. 102.
    L.E. Cederman, et al., Eur. Phys. J. Special Topics 214, 347 (2012)Google Scholar
  103. 103.
    S. Cincotti, et al., Eur. Phys. J. Special Topics 214, 361 (2012)Google Scholar
  104. 104.
    M. Batty, et al., Eur. Phys. J. Special Topics 214, 481 (2012)Google Scholar
  105. 105.
    S. Buckingham Shum, et al., Eur. Phys. J. Special Topics 214, 109 (2012)Google Scholar
  106. 106.
    D. Kossman, et al., Eur. Phys. J. Special Topics 214, 77 (2012)Google Scholar
  107. 107.
    M. San Miguel, et al., Eur. Phys. J. Special Topics 214, 245 (2012)Google Scholar
  108. 108.
    S. Havlin, et al., Eur. Phys. J. Special Topics 214, 273 (2012)Google Scholar
  109. 109.
    J. van den Hoven, et al., Eur. Phys. J. Special Topics 214, 153 (2012)Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.ISTI-CNRNational Research CouncilPisaItaly
  2. 2.University of PisaPisaItaly
  3. 3.MITBostonUSA
  4. 4.DFKIKaiserslauternGermany
  5. 5.ETHZurichSwitzerland
  6. 6.INRIARhone-AlpesFrance

Personalised recommendations