Skip to main content

Competitors’ communities and taxonomy of products according to export fluxes


In this paper we use Complex Network Theory to quantitatively characterize and synthetically describe the complexity of trade between nations. In particular, we focus our attention on export fluxes. Starting from the bipartite countries-products network defined by export fluxes, we define two complementary graphs projecting the original network on countries and products respectively. We define, in both cases, a distance matrix amongst countries and products. Specifically, two countries are similar if they export similar products. This relationship can be quantified by building the Minimum Spanning Tree and the Minimum Spanning Forest from the distance matrices for products and countries. Through this simple and scalable method we are also able to carry out a community analysis. It is not gone unnoticed that in this way we can produce an effective categorization for products providing several advantages with respect to traditional classifications of COMTRADE [1]. Finally, the forests of countries allows for the detection of competitors’ community and for the analysis of the evolution of these communities.

This is a preview of subscription content, access via your institution.


  1. World Trade Flows: 1962-2000,, and

  2. G. Caldarelli,Scale-Free Networks (Oxford University Press, Oxford 2007)

  3. F. Schweitzer, G. Fagiolo, D. Sornette, F. Vega-Redondo, A. Vespignani, Science 325, 422 (2009)

    MathSciNet  ADS  MATH  Google Scholar 

  4. N. Johnson, T. Lux, Nature 469, 302 (2011)

    ADS  Article  Google Scholar 

  5. C.A. Hidalgo, B. Klinger, A.-L. Barabási, R. Hausmann, Science 317, 482 (2007)

    ADS  Article  Google Scholar 

  6. C.A. Hidalgo, R. Hausmann, Proc. Nation. Acad. Sci. (USA) 106, 10570 (2009)

    ADS  Article  Google Scholar 

  7. G. Caldarelli, M. Cristelli, A. Gabrielli, L. Pietronero, A. Scala, A. Tacchella,

  8. B. Balassa, Trade Liberalization and Revealed Comparative Advantage, Manchester School 33, 99123 (1965)

    Google Scholar 

  9. R.N. Mantegna, Eur. Phys. J. B 11, 193 (1999)

    ADS  Article  Google Scholar 

  10. G. Bonanno, G. Caldarelli, F. Lillo, R.N. Mantegna, Phys. Rev. E 68, 046130 (2003)

    ADS  Article  Google Scholar 

  11. G. Bonanno, G. Caldarelli, F. Lillo, S. Micciché, N. Vandewalle, R.N. Mantegna, Eur. Phys. J. B 38, 363371 (2004)

    Article  Google Scholar 

  12. S. Battiston, D. Delli Gatti, M. Gallegati, B. Greenwald, J.E. Stiglitz, J. Econo. Dyn. Cont. 31 20612084 (2007)

    Google Scholar 

  13. G. De Masi, G. Iori, G. Caldarelli, Phys. Rev. E 74, 66112 (2006)

    Article  Google Scholar 

  14. G. Caldarelli, M. Cristelli, A. Gabrielli, L. Pietronero, A. Tacchella,

  15. K.-M. Lee, J.-S. Yang, G. Kim, J. Lee, K.-I. Goh, I.-M. Kim, PLoS ONE 6, e18443 (2011)

    ADS  Article  Google Scholar 

  16. W. Chen, R.M. D’Souza, Phys. Rev. Lett. 106, 115701 (2011)

    ADS  Article  Google Scholar 

  17. G. D’Agostino, A. Scala, V. Zlatić, G. Caldarelli,

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cristelli, M., Tacchella, A., Gabrielli, A. et al. Competitors’ communities and taxonomy of products according to export fluxes. Eur. Phys. J. Spec. Top. 212, 115–120 (2012).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI:


  • European Physical Journal Special Topic
  • Minimal Span Tree
  • Bipartite Network
  • Export Flux
  • Complementary Graph