Skip to main content
Log in

Lattice QCD with overlap fermions on GPUs

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Lattice QCD is widely considered the correct theory of the strong force and is able to make quantitative statements in the low energy regime where perturbation theory is not applicable. The partition function of lattice QCD can be mapped onto a statistical mechanics system which then allows for the use of calculational methods such as Monte Carlo simulations. In recent years, the enormous success of GPU programming has also arrived at the lattice community. In this article, we give a short overview of Lattice QCD and motivate this need for large computing power. In our simulations we concentrate on a specific fermionic discretization, so-called Neuberger-Dirac fermions, which respect an exact chiral symmetry. We will discuss the algorithms we use in our GPU implementation which turns out to be an order of magnitude faster then the conventional CPU-equivalent. As an application we present results on the eigenvalue spectra in QCD and compare them to analytical calculations from Random Matrix Theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.D.Politzer, Phys. Rev. Lett. 30, 1346 (1973)

    Article  ADS  Google Scholar 

  2. D.J.Gross, F.ilczek, Phys. Rev. Lett. 30, 1343 (1973)

    Article  ADS  Google Scholar 

  3. K.G.Wilson,Phys. Rev. D 10, 2445 (1974)

    Article  ADS  Google Scholar 

  4. P.H.Ginsparg, K.G.Wilson, Phys. Rev. D 25, 2649 (1982)

    Article  ADS  Google Scholar 

  5. M.Lüscher, Phys. Lett. B 428, 342 (1998)

    Article  ADS  Google Scholar 

  6. H.Neuberger, Phys. Lett. B 417, 141 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  7. H.Neuberger,Phys. Lett. B 427, 353 (1998)

    Article  ADS  Google Scholar 

  8. T.Banks, A.Casher, Nucl. Phys. B 169, 103 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  9. M.Lüscher, Computational Strategies in Lattice QCD (2010) [arXiv:1002.4232] [hep-lat]

  10. M.Lüscher, JHEP 0712, 011 (2007)

    Article  Google Scholar 

  11. M.Hasenbusch, Phys. Lett. B 519, 177 (2001)

    Article  ADS  MATH  Google Scholar 

  12. G.Egri, Z.Fodor, et al., Comput. Phys. Commun. 177, 631 (2007)

    Article  ADS  Google Scholar 

  13. K.Barros, R.Babich, R.Brower, M.A.Clark, C.Rebbi, PoS LATTICE2008, 045 (2008)

  14. C.Bonati, G.Cossu, M.D’Elia, P.Incardona, Comput. Phys. Commun. 183, 853 (2012)

    Article  ADS  Google Scholar 

  15. B.Walk, H.Wittig, E.Dranischnikow, E.Schömer, PoS LATTICE2010, 044 (2010)

  16. C.Gattringer, C.B.Lang, Lect. Notes Phys. 788, 1 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  17. M.Hasenbusch, K.Jansen, D.Pleiter, H.Stüben, P.Wegner, T.Wettig, H.Wittig, Nucl. Phys. Proc. Suppl. 129, 847 (2004)

    Article  ADS  Google Scholar 

  18. L.Giusti, C.Hoelbling, M.Lüscher, H.Wittig, Comput. Phys. Commun. 153, 31 (2003)

    Article  ADS  MATH  Google Scholar 

  19. P.Hernandez, K.Jansen, M.Lüscher, Nucl. Phys. B 552, 363 (1999)

    Article  ADS  MATH  Google Scholar 

  20. B.Bunk, K.Jansen, M.Lüscher, H.Simma, ALPHA Collaboration internal report (1994)

  21. T.Kalkreuter, H.Simma, Comput. Phys. Commun. 93, 33 (1996)

    Article  ADS  MATH  Google Scholar 

  22. H.Leutwyler, A.V.Smilga, Phys. Rev. D 46, 5607 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  23. P.Hasenfratz, V.Laliena, F.Niedermayer, Phys. Lett. B 427, 125 (1998)

    Article  ADS  Google Scholar 

  24. J.J.M.Verbaarschot, T.Wettig, Ann. Rev. Nucl. Part. Sci. 50, 343 (2000)

    Article  ADS  Google Scholar 

  25. L.Giusti, M.Lüscher, P.Weisz, H.Wittig, JHEP 0311, 023 (2003)

    Article  ADS  Google Scholar 

  26. E.V.Shuryak, J.J.M.Verbaarschot, Nucl. Phys. A 560, 306 (1993)

    Article  ADS  Google Scholar 

  27. P.Hernandez, M.Laine, C.Pena, E.Torro, J.Wennekers, H.Wittig, JHEP 0805, 043 (2008)

    Article  ADS  Google Scholar 

  28. L.Giusti, P.Hernandez, M.Laine, P.Weisz, H.Wittig, JHEP 0404, 013 (2004)

    Article  ADS  Google Scholar 

  29. L.Giusti, P.Hernandez, M.Laine, P.Weisz, H.Wittig, JHEP 0401, 003 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Walk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walk, B., Wittig, H. & Schömer, E. Lattice QCD with overlap fermions on GPUs. Eur. Phys. J. Spec. Top. 210, 189–199 (2012). https://doi.org/10.1140/epjst/e2012-01646-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2012-01646-7

Keywords

Navigation