Skip to main content
Log in

Reconfigurable computing for Monte Carlo simulations: Results and prospects of the Janus project

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We describe Janus, a massively parallel FPGA-based computer optimized for the simulation of spin glasses, theoretical models for the behavior of glassy materials. FPGAs (as compared to GPUs or many-core processors) provide a complementary approach to massively parallel computing. In particular, our model problem is formulated in terms of binary variables, and floating-point operations can be (almost) completely avoided. The FPGA architecture allows us to run many independent threads with almost no latencies in memory access, thus updating up to 1024 spins per cycle. We describe Janus in detail and we summarize the physics results obtained in four years of operation of this machine; we discuss two types of physics applications: long simulations on very large systems (which try to mimic and provide understanding about the experimental non-equilibrium dynamics), and low-temperature equilibrium simulations using an artificial parallel tempering dynamics. The time scale of our non-equilibrium simulations spans eleven orders of magnitude (from picoseconds to a tenth of a second). On the other hand, our equilibrium simulations are unprecedented both because of the low temperatures reached and for the large systems that we have brought to equilibrium. A finite-time scaling ansatz emerges from the detailed comparison of the two sets of simulations. Janus has made it possible to perform spin-glass simulations that would take several decades on more conventional architectures. The paper ends with an assessment of the potential of possible future versions of the Janus architecture, based on state-of-the-art technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.A.Angell, Science 267, 1924 (1995)

    Article  ADS  Google Scholar 

  2. P.G.Debenedetti, Metastable Liquids (Princeton University Press, Princeton, 1997)

  3. P.G.Debenedetti, F.H.Stillinger, Nature 410, 259 (2001)

    Article  ADS  Google Scholar 

  4. L.C.E.Struick, Physical Aging in Amorphous Polymers and Other Materials (Elsevier, Houston, 1978)

  5. J.A.Mydosh, Spin Glasses: an Experimental Introduction (Taylor and Francis, London, 1993)

  6. A.P.Young (ed.), Spin Glasses and Random Fields (World Scientific, Singapore, 1998)

  7. A.D.Ogielski, D.A.Huse, Phys. Rev. Lett. 56, 1298 (1986)

    Article  ADS  Google Scholar 

  8. P.A. Boyle, et al., IBM J. Res. Develop. 49, 351 (2005)

    Article  Google Scholar 

  9. F. Belletti, et al., Comput. Sci. Eng. 8, 18 (2006)

    Article  Google Scholar 

  10. G. Goldrian, et al., Comput. Sci. Eng. 10, 46 (2008)

    Article  Google Scholar 

  11. H. Baier, et al., Comput. Sci. - Res. Develop. 25, (2010) 149

    Article  Google Scholar 

  12. J. Makino, et al., Proceedings of the 2000 ACM/IEEE conference on Supercomputing (2000)

  13. J. Pech, et al., Comp. Phys. Comm. 106, 10 (1997)

    Article  ADS  MATH  Google Scholar 

  14. A. Cruz, et al., Comp. Phys. Comm. 133, 165 (2001)

    Article  ADS  MATH  Google Scholar 

  15. S.F. Edwards, P.W. Anderson, J. Phys. F: Metal Phys. 5, 965 (1975)

    Article  ADS  Google Scholar 

  16. S.F. Edwards, P.W. Anderson, J. Phys. F: Metal Phys. 6, 1927 (1976)

    Article  ADS  Google Scholar 

  17. J. Barahona, J. Phys. A: Math. Gen. 15, 3241 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  18. M. Mézard, G. Parisi, M. Virasoro, Spin-Glass Theory and Beyond (World Scientific, Singapore, 1987)

  19. M. Mézard, G. Parisi, R. Zecchina, Science 297, 812 (2002)

    Article  ADS  Google Scholar 

  20. R. Zecchina, in Encyclopedia of Mathematical Physics, edited by J.-P. Françoise, G.L. Naber, T.S. Tsun (Elsevier, Oxford, 2006)

  21. K. Gunnarsson, et al., Phys. Rev. B 43, 8199 (1991), see also P. Norblad, P. Svendlidh Experiments on Spin-Glasses in [6]

    Article  ADS  Google Scholar 

  22. H.G. Ballesteros, et al., Phys. Rev. B 62, 14237 (2000)

    Article  ADS  Google Scholar 

  23. F. Bert, et al., Phys. Rev. Lett. 92, 167203 (2004)

    Article  ADS  Google Scholar 

  24. D.J. Amit, V.Martin-Mayor, Field Theory, the Renormalization Group and Critical Phenomena, 3rd edn. (World Scientific, Singapore, 2005)

  25. M.E.J. Newman, G. Barkema, Monte Carlo Methods in Statistical Physics (Oxford University Press, 1999)

  26. H. Hukushima, K. Nemoto, J. Phys. Soc. Japan 65, 1604 (1996)

    Article  ADS  Google Scholar 

  27. E. Marinari in Advances in Computer Simulation, edited by J. Kerstéz, I. Kondor (Springer-Verlag, 1998)

  28. H.G. Katzgraber, Introduction to Monte Carlo methods, lecture at Modern Computation Science (Oldenburg, 2009)

  29. F. Belletti, et al., Comp. Phys. Comm. 178, 208 (2008)

    Article  ADS  Google Scholar 

  30. F.Belletti, et al., Proceedings of ParCo2007, Parallel Computing: Architectures, Algorithms and Applications, NIC Series, vol. 38 (2007), p. 553

  31. F. Belletti, et al., Comput. Sci. Eng. 8, 41 (2006)

    Article  Google Scholar 

  32. F. Belletti, et al., Comput. Sci. Eng. 11, 48 (2009)

    Article  Google Scholar 

  33. V.Parisi, G.Parisi, F.Rapuano, Phys. Lett. B 157, 301 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  34. H.G. Ballesteros, V. Martin-Mayor, Phys. Rev. E 58, 6787 (1998)

    Article  ADS  Google Scholar 

  35. P. Contucci, C.Giardinà, C.Giberti, G.Parisi, C.Vernia, Phys. Rev. Lett. 99, 057206 (2007)

    Article  ADS  Google Scholar 

  36. S. Jimenez, V. Martin-Mayor, G. Parisi, A. Tarancon, J. Phys. A: Math. Gen. 36, 10755 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. F. Belletti, et al., Phys. Rev. Lett. 101, 157201 (2008)

    Article  ADS  Google Scholar 

  38. F. Belletti, et al., J. Stat. Phys. 135, 1121 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. L.A. Fernandez, et al., Phys. Rev. B 80, 024422 (2009)

    Article  ADS  Google Scholar 

  40. R.A. Baños, et al., J. Stat. Mech. P06026 (2010)

  41. R.A. Baños, et al., Phys. Rev. B 84, 174209 (2011)

    Article  ADS  Google Scholar 

  42. A. Billoire, et al., J. Stat. Mech. P10019 (2011)

  43. R.A. Baños, et al., Phys. Rev. Lett. 105, 177202 (2010)

    Article  Google Scholar 

  44. M. Mézard, G. Parisi, M.A. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987)

  45. D.S. Fisher, D.A. Huse, Phys. Rev. Lett. 56, 1601 (1986)

    Article  ADS  Google Scholar 

  46. D.S. Fisher, D.A. Huse, Phys. Rev. B 38, 373 (1988)

    Article  ADS  Google Scholar 

  47. D.S. Fisher, D.A. Huse, Phys. Rev. B 38, 386 (1988)

    Article  ADS  Google Scholar 

  48. F. Krzakala, O.C. Martin, Phys. Rev. Lett. 85, 3013 (2000)

    Article  ADS  Google Scholar 

  49. M. Palassini, A.P. Young, Phys. Rev. Lett. 85, 3017 (2000)

    Article  ADS  Google Scholar 

  50. J.R.L. de Almeida, D.J. Thouless, J. Phys. A 11, 983 (1978)

    Article  ADS  Google Scholar 

  51. R.A. Baños, et al., Proc. Natl. Acad. Sci. USA 109, 6452 (2012)

    Article  ADS  Google Scholar 

  52. D.J. Gross, I. Kanter, H. Sompolinsky, Phys. Rev. Lett. 55, 304 (1985)

    Article  ADS  Google Scholar 

  53. A. Cruz, et al., Phys. Rev. B 79, 184408 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  54. R.A. Baños, et al., J. Stat. Mech. P05002 (2010)

  55. J.T. Chayes, L. Chayes, D.S. Fischer, T. Spencer, Phys. Rev. Lett. 57, 2999 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  56. A. Maiorano, V. Martin-Mayor, J.J. Ruiz-Lorenzo, A. Tarancon, Phys. Rev. B 76, 064435 (2007)

    Article  ADS  Google Scholar 

  57. M. Guidetti, et al., Proceedings of PPAM09, Lecture Notes on Computer Science (LNCS) 6067 (Springer, 2010), p. 467

  58. M. Guidetti, et al., Monte Carlo Simulations of Spin Systems on Multi-core Processors, Lecture Notes on Computer Science (LNCS) 7133, edited by K. Jonasson (Springer, Heidelberg, 2010), p. 220

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baity-Jesi, M., Baños, R.A., Cruz, A. et al. Reconfigurable computing for Monte Carlo simulations: Results and prospects of the Janus project. Eur. Phys. J. Spec. Top. 210, 33–51 (2012). https://doi.org/10.1140/epjst/e2012-01636-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2012-01636-9

Keywords

Navigation