Skip to main content
Log in

Are dragon-king neuronal avalanches dungeons for self-organized brain activity?

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Recent experiments have detected a novel form of spontaneous neuronal activity both in vitro and in vivo: neuronal avalanches. The statistical properties of this activity are typical of critical phenomena, with power laws characterizing the distributions of avalanche size and duration. A critical behaviour for the spontaneous brain activity has important consequences on stimulated activity and learning. Very interestingly, these statistical properties can be altered in significant ways in epilepsy and by pharmacological manipulations. In particular, there can be an increase in the number of large events anticipated by the power law, referred to herein as dragon-king avalanches. This behaviour, as verified by numerical models, can originate from a number of different mechanisms. For instance, it is observed experimentally that the emergence of a critical behaviour depends on the subtle balance between excitatory and inhibitory mechanisms acting in the system. Perturbing this balance, by increasing either synaptic excitation or the incidence of depolarized neuronal up-states causes frequent dragon-king avalanches. Conversely, an unbalanced GABAergic inhibition or long periods of low activity in the network give rise to sub-critical behaviour. Moreover, the existence of power laws, common to other stochastic processes, like earthquakes or solar flares, suggests that correlations are relevant in these phenomena. The dragon-king avalanches may then also be the expression of pathological correlations leading to frequent avalanches encompassing all neurons. We will review the statistics of neuronal avalanches in experimental systems. We then present numerical simulations of a neuronal network model introducing within the self-organized criticality framework ingredients from the physiology of real neurons, as the refractory period, synaptic plasticity and inhibitory synapses. The avalanche critical behaviour and the role of dragon-king avalanches will be discussed in relation to different drives, neuronal states and microscopic mechanisms of charge storage and release in neuronal networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HE Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford Univ. Press, New York, 1971)

  2. P. Bak, How nature works. The Science of Self-organized Criticality (Springer, New York, 1996)

  3. P. Bak, C. Tang, J. Geophys. Res. 94, 15635 (1989)

    Article  ADS  Google Scholar 

  4. A. Sornette, D. Sornette, Europhys. Lett. 9, 197 (1989)

    Article  ADS  Google Scholar 

  5. P. Bak, K. Sneppen, Phys. Rev. Lett. 71, 4083 (1993)

    Article  ADS  Google Scholar 

  6. E.T. Lu, R.J. Hamilton, Astrophys. J. 380, L89 (1991)

    Article  ADS  Google Scholar 

  7. P.A. Politzer, Phys. Rev. Lett. 84, 1192 (2000)

    Article  ADS  Google Scholar 

  8. J. Faillettaz, F. Louchet, J.R. Grasso, Phys. Rev. Lett. 93, 208001 (2004)

    Article  ADS  Google Scholar 

  9. O. Peters, C. Hertlein, K. Christensen, Phys. Rev. Lett. 88, 018701 (2002)

    Article  ADS  Google Scholar 

  10. A. Gevins, et al., Trends Neurosci. 18, 429 (1995)

    Article  Google Scholar 

  11. G. Buzsaki, A. Draguhn, Science 304, 1926 (2004)

    Article  ADS  Google Scholar 

  12. J.M. Hausdorff, et al., Physica A. 302, 138 (2001)

    Article  ADS  MATH  Google Scholar 

  13. S.B. Lowen, S.S. Cash, M. Poo, M.C. Teich, J. Neuroscience 17, 5666 (1997)

    Google Scholar 

  14. D.R. Chialvo, G.A. Cecchi, M.O. Magnasco, Phys. Rev. E 61, 5654 (2000)

    Article  ADS  Google Scholar 

  15. W.L. Shew, H. Yang, T. Petermann, R. Roy, D. Plenz, J. Neurosci. 29, 155595 (2009)

    Article  Google Scholar 

  16. C.M. Lewis, A. Baldassarre, G. Committeri, G.L. Romani, M. Corbetta, Proc. Natl. Acad. Sci. USA 106, 17558 (2009)

    Article  ADS  Google Scholar 

  17. L. de Arcangelis, H.J. Herrmann, Proc. Natl. Acad. Sci. 107, 3977 (2010)

    Article  ADS  Google Scholar 

  18. D. Purves, G.J. Augustine, D. Fitzpatrick, W.C. Hall, Neuroscience (Sinauer, Sunderland, 2004)

  19. D.O. Hebb, The Organization of Behaviour (John Wiley, New York, 1949)

  20. O. Shefi, I. Golding, R. Segev, E. Ben-Jacob, A. Ayali, Phys. Rev. E. 66, 021905 (2002)

    Article  ADS  Google Scholar 

  21. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  22. V.M. Eguiluz, D.R. Chialvo, G.A. Cecchi, M. Baliki, A.V. Apkarian, Phys. Rev. Lett. 94, 0181021 (2005)

    Article  Google Scholar 

  23. G.A. Arieli, A. Sterkin, A. Aertsen, Science 273, 1868 (1996)

    Article  ADS  Google Scholar 

  24. R. Azouz, C.M. Gray, J. Neurosci. 19, 2209 (1999)

    Google Scholar 

  25. C.F. Stevens, T. Tsujimoto, Proc. Natl. Acad. Sci. 92, 846 (1995)

    Article  ADS  Google Scholar 

  26. K.J. Staley, et al., Nat. Naurosci. 1, 201 (1998)

    Article  Google Scholar 

  27. E. Maeda, H.P. Robinson, A. Kawana, J. Neurosci. 15, 6834 (1995)

    Google Scholar 

  28. R. Segev, et al., Phys. Rev. Lett. 88, 118102 (2002)

    Article  ADS  Google Scholar 

  29. J.M. Beggs, D. Plenz, J. Neurosci. 23, 11167 (2003)

    Google Scholar 

  30. J.M. Beggs, D. Plenz, J. Neurosci. 24, 5216 (2004)

    Article  Google Scholar 

  31. I. Osorio, M.G. Frei, D. Sornette, J. Milton, Y.C. Lai, Phys. Rev. E 82, 021919 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  32. E.D. Gireesh, D. Plenz, Proc. Natl. Acad. Sci. 105, 7576 (2008)

    Article  ADS  Google Scholar 

  33. T. Petermann, et al., Proc. Natl. Acad. Sci. 106, 15921 (2009)

    Article  ADS  Google Scholar 

  34. A. Mazzoni, et al., PLoS ONE 5, e439 (2007)

    Article  ADS  Google Scholar 

  35. V. Pasquale, et al., Neuroscience 153, 1354 (2008)

    Article  Google Scholar 

  36. W.L. Shew, et al., J. Neurosci. 29, 15595 (2009)

    Article  Google Scholar 

  37. S. Zapperi, K.B. Lauritsen, H.E. Stanley, Phys. Rev. Lett. 75, 4071 (1995)

    Article  ADS  Google Scholar 

  38. S. Pajevic, D. Plenz, PLoS Computational Biology 5, e1000271 (2009)

    Article  MathSciNet  Google Scholar 

  39. L. de Arcangelis, C. Perrone-Capano, H.J. Herrmann, Phys. Rev. Lett. 96, 028107 (2006)

    Article  ADS  Google Scholar 

  40. G.L. Pellegrini, L. de Arcangelis, H.J. Herrmann, C. Perrone-Capano, Phys. Rev. E 76, 016107 (2007)

    Article  ADS  Google Scholar 

  41. A. Levina, J.M. Herrmann, T. Geisel, Nat. Phys. 3, 857 (2007)

    Article  Google Scholar 

  42. J.N. Teramae, T. Fukai, J. Comput. Neurosci. 22, 301 (2007)

    Article  MathSciNet  Google Scholar 

  43. E. Novikov, A. Novikov, D. Shannahoff-Khalsa, B. Schwartz, J. Wright, Phys. Rev. E 56, R2387 (1997)

    Article  ADS  Google Scholar 

  44. B. Roerig, B. Chen, Cerebral Cortex 12, 187 (2002)

    Article  Google Scholar 

  45. S.J. Cooper, Neurosci. Biobehav. Rev. 28, 851 (2005)

    Article  Google Scholar 

  46. N.S. Desai, J. Physiol. Paris 97, 391 (2003)

    Article  Google Scholar 

  47. T.D. Albraight, et al., Neuron, Rev. Suppl. 59 (2000)

  48. O. Paulsen, T.J. Sejnowski, Curr. Opin. Neurobiol. 10, 172 (2000)

    Article  Google Scholar 

  49. K.H. Braunewell, D. Manahan-Vaughan, Rev. Neurosci. 12, 121 (2001)

    Article  Google Scholar 

  50. G.Q. Bi, M.M. Poo, Annu. Rev. Neurosci. 24, 139 (2001)

    Article  Google Scholar 

  51. M. Pica Ciamarra, E. Lippiello, C. Godano, L. de Arcangelis, EPL (to appear)

  52. M. Pica Ciamarra, E. Lippiello, C. Godano, L. de Arcangelis, Phys. Rev. Lett. 104, 238001 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Arcangelis, L. Are dragon-king neuronal avalanches dungeons for self-organized brain activity?. Eur. Phys. J. Spec. Top. 205, 243–257 (2012). https://doi.org/10.1140/epjst/e2012-01574-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2012-01574-6

Keywords

Navigation