Skip to main content
Log in

Modeling of super-extreme events: An application to the hierarchical Weierstrass-Mandelbrot Continuous-time Random Walk

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We analytically demonstrate and numerically simulate two utmost cases of dragon-kings’ impact on the (unnormalized) velocity autocorrelation function (VACF) of a complex time series generated by stochastic random walker. The first type of dragon-kings corresponds to a sustained drift whose duration time is much longer than that of any other event. The second type of dragon-kings takes the form of an abrupt shock whose amplitude velocity is much larger than those corresponding to any other event. The stochastic process in which the dragon-kings occur corresponds to an enhanced diffusion generated within the hierarchical Weierstrass-Mandelbrot Continuous-time Random Walk (WM-CTRW) formalism. Our analytical formulae enable a detailed study of the impact of the two super-extreme events on the VACF calculated for a given random walk realization on the form of upward deviations from the background power law decay present in the absence of dragon-kings. This allows us to provide a unambiguous distinction between the super-extreme dragon-kings and ‘normal’ extreme “black swans”. The results illustrate diagnostic that could be useful for the analysis of extreme and super-extreme events in real empirical time series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Sornette, Critical Phenomena in Natural Sciences. Chaos, Fractals, Self-organization, Disorder: Concepts and Tools, 2nd edn., Springer Series in Synergetics (Springer-Verlag, Heidelberg, 2004)

  2. S. Albeverio, V. Jentsch, H. Kantz (eds.), Extreme Events in Nature and Society (Springer-Verlag, Berlin, 2006)

  3. A. Bunde, Sh. Havlin (eds.), Fractals and Disordered in Science, Second Revised and Enlarged Edition (Springer-Verlag, Berlin, 1996)

  4. A. Bunde, Sh. Havlin (eds.), Fractals in Science (Springer-Verlag, Berlin, 1995)

  5. Sh. Havlin, D. ben-Avraham, Adv. Phys. 36, 695 (1987)

    Article  ADS  Google Scholar 

  6. D. ben-Avraham, Sh. Havlin, Diffusion and Reactions in Fractals and Disordered Systems (Cambridge University Press, Cambridge, 2000)

  7. J.-P. Bouchaud, A. Georges, Phys. Rep. 195, 127 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  8. R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. M. Shlesinger, G.M. Zaslavsky, U. Frisch (eds.), Lévy Flights and Related Topics in Physics, LNP 450 (Springer-Verlag, Berlin, 1995)

  10. R. Kutner, A. Pekalski, K. Sznajd-Weron (eds.), Anomalous Diffusion. From Basics to Applications LNP 519 (Springer-Verlag, Berlin, 1999)

  11. R.N. Mantegna, H.E. Stanley, Econophysics. Correlations and Complexity in Finance (Cambridge University Press, Cambridge, 2000)

  12. Y. Malevergne, D. Sornette, Extreme Financial Risks. From Dependence to Risk Management (Springer-Verlag, Berlin, 2006)

  13. D. Sornette, Int. J. Terraspace Eng. 2, 1 (2009)

    Google Scholar 

  14. J. Laherrère, D. Sornette, EPJ B 2, 525 (1999)

    ADS  Google Scholar 

  15. Engineering Statistical Handbook, National Institute of Standards and Technology (2007)

  16. R. Kutner, Physica A 264, 84 (1999)

    Article  Google Scholar 

  17. R. Kutner, M. Regulski, Physica A 264, 107 (1999)

    Article  Google Scholar 

  18. R. Kutner, F. Świtała, Quant. Fin. 3, 201 (2003)

    Article  Google Scholar 

  19. R. Kutner, F. Świtała, EPJ B 33, 495 (2003)

    ADS  Google Scholar 

  20. J.-P. Bouchaud, J. Phys. I (France) 2, 1705 (1992)

    Article  Google Scholar 

  21. H. Weissman, G.H. Weiss, Sh. Havlin, J. Stat. Phys. 57, 301 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  22. G.H. Weiss, Aspects and Applications of the random Walk (North Holland, Amsterdam, 1994)

  23. G. Pfister, H. Scher, Adv. Phys. 27, 747 (1978)

    Article  ADS  Google Scholar 

  24. J. Haus, K.W. Kehr, Phys. Rep. 150, 263 (1987)

    Article  ADS  Google Scholar 

  25. M. Kozłowska, R. Kutner, Physica A 357, 282 (2005)

    Article  ADS  Google Scholar 

  26. M.S. Taqqu, V. Teverowsky, W. Willinger, Fractals 3, 785 (1995)

    Article  MATH  Google Scholar 

  27. G. Margolin, E. Barkai, Phys. Rev. Lett. 94, 080601 (2005)

    Article  ADS  Google Scholar 

  28. G. Bel, E. Barkai, Phys. Rev. Lett. 94, 240602 (2005)

    Article  ADS  Google Scholar 

  29. G. Bel, E. Barkai, Phys. Rev. E 73, 016125 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  30. D. Sornette, Probability Distributions in Complex Systems, core article for Encyclopedia of Complexity and Systems Science, edited by R.A. Meyers (Springer-Varlag, Berlin, 2009)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werner, T.R., Gubiec, T., Kutner, R. et al. Modeling of super-extreme events: An application to the hierarchical Weierstrass-Mandelbrot Continuous-time Random Walk. Eur. Phys. J. Spec. Top. 205, 27–52 (2012). https://doi.org/10.1140/epjst/e2012-01560-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2012-01560-0

Keywords

Navigation