Stick slip displacement of confined granular mixtures: Bubble expansion

Regular Article

Abstract

When a compressible gas displaces a granular mixture in a quasi 2D space, friction causes stick slip motion. A localized slip event at the interface allows expansion of the compressed gas and a sudden forward motion of the front. The reservoir volume of gas determines the available elasticity in the system, and thereby the size of the expansion. Large expansions take the shape of bubbles, and in this paper we study the accumulation of granular material around the inflating gas bubble, and the rheological response of the system during this short expansion phase.

Keywords

Granular Material Capillary Pressure European Physical Journal Special Topic Bubble Radius Stick Slip Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.G. Saffman, G. Taylor, Proc. R. Soc. Lond Ser. A 245, 1242 (1958)MathSciNetGoogle Scholar
  2. 2.
    E. Lemaire, P. Levitz, G. Daccord, H. Vandamme, Phys. Rev. Lett. 67, 15 (1991)CrossRefGoogle Scholar
  3. 3.
    D. Bonn, H. Kellay, M. Benamar, J. Meunier, Phys. Rev. Lett., 75, 11 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    A. Lindner, D. Bonn, E.C. Poire, M. Ben Amar, J. Meunier, J. Fluid Mech. 469, 2002)Google Scholar
  5. 5.
    R. Lenormand, Physica A, 75, 11 (1995)Google Scholar
  6. 6.
    K.J. Målø, J. Feder, T. Jøssang, Phys. Rev. Lett. 55, 24 (1985)Google Scholar
  7. 7.
    Y. Meheust, G. Løvoll, K.J. Målø, J. Schmittbuhl, Phys. Rev. E 66, 5 (2002)CrossRefGoogle Scholar
  8. 8.
    N. Huang, G. Ovarlez, F. Bertrand, S. Rodts, P. Coussot, D. Bonn, Phys. Rev. Lett. 94, 2 (2005)Google Scholar
  9. 9.
    Ø. Johnsen, C. Chevalier, A. Lindner, R. Toussant, E. Clement, K.J. Målø, E.G. Flekkøy, J. Schmittbuhl, Phys. Rev. E 78, 5 (2008)CrossRefGoogle Scholar
  10. 10.
    X. Cheng, L. Xu, A. Patterson, H.M. Jaeger, S.R. Nagel, Nat. Phys. 4, 3 (2008)CrossRefGoogle Scholar
  11. 11.
    C. Chevalier, A. Lindner, E. Clement, Phys. Rev. Lett. 99, 17 (2007)CrossRefGoogle Scholar
  12. 12.
    C. Chevalier, A. Lindner, M. Leroux, E. Clement, J. Non-Newton. Fluid Mech. 158, 63 (2009)CrossRefGoogle Scholar
  13. 13.
    B. Sandnes, H.A. Knudsen, K.J. Målø, E.G. Flekkøy, Phys. Rev. Lett. 99, 3 (2007)CrossRefGoogle Scholar
  14. 14.
    H.A. Knudsen, B. Sandnes, E.G. Flekkøy, K.J. Målø, Phys. Rev. E 77, 2 (2008)CrossRefGoogle Scholar
  15. 15.
    A. Fall, F. Bertrand, G. Ovarlez, D. Bonn, Phys. Rev. Lett. 103, 17 (2009)CrossRefGoogle Scholar
  16. 16.
    B. Sandnes, E.G. Flekkøy, H.A. Knudsen, K.J. Målø, H. See, Nat. Commun. 2, 288 (2011)CrossRefGoogle Scholar
  17. 17.
    W.B. Haines, J. Agric. Sci. 20, 97 (1930)CrossRefGoogle Scholar
  18. 18.
    K.J. Målø, L. Furuberg, J. Feder, T. Jøssang, Phys. Rev. Lett. 68, 14 (1992)Google Scholar
  19. 19.
    L. Furuberg, K.J. Målø, J. Feder, Phys. Rev. E. 53, 53 (1996)CrossRefGoogle Scholar
  20. 20.
    K.T. McDonald, eprint [arXiv:physics/0006067] (2000)Google Scholar
  21. 21.
    J.J. Stickel, R.L. Powell, Annu. Rev. Fluid Mech. 37, 129 (2005)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2012

Authors and Affiliations

  1. 1.Department of PhysicsNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.School of Chemical and Biomolecular EngineeringUniversity of SydneySydneyAustralia
  3. 3.Department of PhysicsUniversity of OsloBlindernOslo, Norway

Personalised recommendations