Skip to main content
Log in

Stochastic-dynamical thermostats for constraints and stiff restraints

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

A broad array of canonical sampling methods are available for molecular simulation based on stochastic-dynamical perturbation of Newtonian dynamics, including Langevin dynamics, Stochastic Velo- city Rescaling, and methods that combine Nosé-Hoover dynamics with stochastic perturbation. In this article we discuss several stochastic-dynamical thermostats in the setting of simulating systems with holonomic constraints. The approaches described are easily implemented and facilitate the recovery of correct canonical averages with minimal disturbance of the underlying dynamics. For the purpose of illustrating our results, we examine the numerical application of these methods to a simple atomic chain, where a Fixman term is required to correct the thermodynamic ensemble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Bussi, D. Donadio, M. Parrinello, J. Chem. Phys. 126, 014101 (2007)

    Article  ADS  Google Scholar 

  2. G. Bussi, M. Parrinello, Comp. Phys. Comm. 179, 26 (2008)

    Article  ADS  Google Scholar 

  3. W.K. den Otter, W. Briels, J. Chem. Phys. 106, 13 (1997)

    Article  Google Scholar 

  4. M. Cassandro, G. Ciccotti, V. Rosato, J.P. Ryckaert, Statistical mechanics of rigid systems: an atomic description, unpublished note

  5. G. Ciccotti, J.P. Ryckaert, Comp. Phys. Reports 4, 346 (1986)

    Article  ADS  Google Scholar 

  6. G. Ciccotti, R. Kapral, E. Vanden-Eijnden, Chem. Phys. Chem. 6, 1809 (2005)

    Article  Google Scholar 

  7. E. Darve, Ph.D. thesis, Université Paris VI (1999)

  8. W.E.W. Ren, E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002)

    ADS  Google Scholar 

  9. M. Fixman, P. Nat. Acad. Sci. 71, 3050 (1974)

    Article  ADS  Google Scholar 

  10. M. Fixman, J. Chem. Phys. 69, 1527 (1978)

    Article  ADS  Google Scholar 

  11. J. Frank, G.A. Gottwald, J. Stat. Phys. 143, 715 (2011)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. N. Go, H.A. Scheraga, J. Chem. Phys. 51, 4751 (1969)

    Article  ADS  Google Scholar 

  13. N. Go, H.A. Scheraga, Macromolecules 9, 535 (1976)

    Article  ADS  Google Scholar 

  14. A. Jones, B. Leimkuhler (2011) (submitted)

  15. N.G. van Kampen, Appl. Sci. Res. 37, 67 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  16. N.G. van Kampen, J.J. Lodder, Am. J. Phys. 52, 419 (1984)

    Article  ADS  Google Scholar 

  17. B. Leimkuhler, S. Reich, Math. Comp. 63, 598 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  18. B. Leimkuhler, Phys. Rev. E 81, 026703 (2010)

    Article  ADS  Google Scholar 

  19. B. Leimkuhler, E. Noorizadeh, O. Penrose, J. Stat. Phys. 143, 921 (2011)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. B. Leimkuhler, E. Noorizadeh, F. Theil, J. Stat. Phys. 135, 261 (2009)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. T. Lelièvre, M. Rousset, G. Stoltz (preprint) (2010)

  22. A. Samoletov, M.A.J. Chaplain, C.P. Dettmann, J. Stat. Phys. 128, 1321 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. J.A. Izaguirre, D.P. Catarello, J.M. Wozniak, R.D. Skeel, J. Chem. Phys. 114, 2090 (2001)

    Article  ADS  Google Scholar 

  24. P. Minary, G.J. Martyna, M.E. Tuckerman, Phys. Rev. Lett. 93, 150201 (2004)

    Article  ADS  Google Scholar 

  25. S. Reich, Physica D. 89, 28 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  26. C. Hartmann, Constraints in Molecular Simulation 2010, Zaragosa, slides, http://neptuno.unizar.es/events/constraints2010/files/Carsten_Hartmann.pdf

  27. S. Melchionna, J. Chem. Phys. 127, 044108 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Bajars, J. Frank or B. Leimkuhler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bajars, J., Frank, J. & Leimkuhler, B. Stochastic-dynamical thermostats for constraints and stiff restraints. Eur. Phys. J. Spec. Top. 200, 131–152 (2011). https://doi.org/10.1140/epjst/e2011-01522-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2011-01522-0

Keywords

Navigation