Skip to main content
Log in

Form factors in lattice QCD

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Lattice simulations of QCD have produced precise estimates for the masses of the lowest-lying hadrons which show excellent agreement with experiment. By contrast, lattice results for the vector and axial vector form factors of the nucleon show significant deviations from their experimental determination. We present results from our ongoing project to compute a variety of form factors with control over all systematic uncertainties. In the case of the pion electromagnetic form factor we employ partially twisted boundary conditions to extract the pion charge radius directly from the linear slope of the form factor near vanishing momentum transfer. In the nucleon sector we focus specifically on the possible contamination from contributions of higher excited states. We argue that summed correlation functions offer the possibility of eliminating this source of systematic error. As an illustration of the method we discuss our results for the axial charge, g A , of the nucleon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CP-PACS Collaboration, S. Aoki, et al., Phys. Rev. Lett. 84, 238 (2000) [hep-lat/9904012]

    Article  ADS  Google Scholar 

  2. CP-PACS Collaboration, S. Aoki, et al., Phys. Rev. D 67, 034503 (2003) [hep-lat/0206009]

    Article  ADS  Google Scholar 

  3. MILC Collaboration, C.W. Bernard, et al., Phys. Rev. Lett. 81, 3087 (1998) [hep-lat/9805004]

    Article  ADS  Google Scholar 

  4. UKQCD Collaboration, K.C. Bowler, et al., Phys. Rev. D 62, 054506 (2000) [hep-lat/9910022]

    Article  ADS  Google Scholar 

  5. BGR Collaboration, C. Gattringer, et al., Nucl. Phys. B 677, 3 (2004) [hep-lat/0307013]

    Article  ADS  Google Scholar 

  6. CP-PACS-Collaboration, S. Aoki, et al., Phys. Rev. D 60, 114508 (1999) [hep-lat/9902018]

    Article  ADS  Google Scholar 

  7. C.W. Bernard, et al., Phys. Rev. D 64, 054506 (2001) [hep-lat/0104002]

    Article  ADS  Google Scholar 

  8. PACS-CS Collaboration, S. Aoki, et al., Phys. Rev. D 79, 034503 (2009) [arXiv:0807.1661]

    Article  ADS  Google Scholar 

  9. S. Dürr, et al., Science 322, 1224 (2008) [arXiv:0906.3599]

    Article  ADS  Google Scholar 

  10. ETM Collaboration, C. Alexandrou, et al., Phys. Rev. D 78, 014509 (2008) [arXiv:0803.3190]

    Article  ADS  Google Scholar 

  11. ETM Collaboration, C. Alexandrou, et al., Phys. Rev. D 80, 114503, 2009) [arXiv:0910.2419]

    Article  ADS  Google Scholar 

  12. G. Colangelo, et al. [arXiv:1011.4408]

  13. Particle Data Group, K. Nakamura, et al., J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  14. J.M. Zanotti, PoS LATTICE2008 007 (2008) [arXiv:0812.3845]

  15. D.B. Renner, PoS LAT2009 018 (2009) [arXiv:1002.0925]

  16. C. Alexandrou, PoS LATTICE2010 001 (2010) [arXiv:1011.3660]

  17. P.H. Ginsparg, K.G. Wilson, Phys. Rev. D 25, 2649 (1982)

    Article  ADS  Google Scholar 

  18. P. Hasenfratz, V. Laliena, F. Niedermayer, Phys. Lett. B 427, 125 (1998) [hep-lat/9801021]

    Article  ADS  Google Scholar 

  19. M. Lüscher, Phys. Lett. B 428, 342 (1998) [hep-lat/9802011]

    Article  ADS  Google Scholar 

  20. D.B. Kaplan, Phys. Lett. B 288, 342 (1992) [hep-lat/9206013]

    Article  MathSciNet  ADS  Google Scholar 

  21. V. Furman, Y. Shamir, Nucl. Phys. B 439, 54 (1995) [hep-lat/9405004]

    Article  ADS  Google Scholar 

  22. H. Neuberger, Phys. Lett. B 417, 141 (1998) [hep-lat/9707022]

    Article  MathSciNet  ADS  Google Scholar 

  23. H. Neuberger, Phys. Lett. B 427, 353 (1998) [hep-lat/9801031]

    Article  ADS  Google Scholar 

  24. F. Wilczek, Phys. Rev. Lett. 59, 2397 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  25. M. Creutz, JHEP 04, 017 (2008) [arXiv:0712.1201]

    Article  ADS  Google Scholar 

  26. A. Boriçi, Phys. Rev. D 78, 074504 (2008) [arXiv:0712.4401]

    Article  ADS  Google Scholar 

  27. M. Creutz, PoS LATTICE2008 080 (2008) [arXiv:0808.0014]

  28. S. Capitani, J. Weber, H. Wittig, Phys. Lett. B 681, 105 (2009) [arXiv:0907.2825]

    Article  MathSciNet  ADS  Google Scholar 

  29. S. Capitani, M. Creutz, J. Weber, H. Wittig, JHEP 09, 027 (2010) [arXiv:1006.2009]

    Article  ADS  Google Scholar 

  30. C. Bernard, et al., Nucl. Phys. B (Proc. Suppl.) 106, 199 (2002)

    Article  ADS  Google Scholar 

  31. J.C. Sexton, D.H. Weingarten, Nucl. Phys. B 380, 665 (1992)

    Article  ADS  Google Scholar 

  32. M. Lüscher, Comput. Phys. Commun. 165, 199 (2005) [hep-lat/0409106]

    Article  ADS  Google Scholar 

  33. C. Urbach, K. Jansen, A. Shindler, U. Wenger, Comput. Phys. Commun. 174, 87 (2006) [hep-lat/0506011]

    Article  ADS  Google Scholar 

  34. M. Hasenbusch, Phys. Lett. B 519, 177 (2001) [hep-lat/0107019]

    Article  ADS  MATH  Google Scholar 

  35. M. Lüscher, JHEP 12, 011 (2007) [arXiv:0710.5417]

    Article  Google Scholar 

  36. M. Marinkovic, S. Schaefer, PoS LATTICE2010 031 (2010) [arXiv:1011.0911]

  37. PACS-CS Collaboration, S. Aoki, et al., Phys. Rev. D 81, 074503 (2010) [arXiv:0911.2561]

    Article  ADS  Google Scholar 

  38. BMW Collaboration, S. Dürr, et al. [arXiv:1011.2711]

  39. UKQCD, C.R. Allton, et al., Phys. Rev. D 47, 5128 (1993) [hep-lat/9303009]

    Article  ADS  Google Scholar 

  40. A. Hasenfratz, F. Knechtli, Phys. Rev. D 64, 034504 (2001) [hep-lat/0103029]

    Article  ADS  Google Scholar 

  41. B. Sheikholeslami, R. Wohlert, Nucl. Phys. B 259, 572 (1985)

    Article  ADS  Google Scholar 

  42. ALPHA Collaboration, K. Jansen, R. Sommer, Nucl. Phys. B 530, 185 (1998) [hep-lat/9803017]

    Article  ADS  Google Scholar 

  43. P.F. Bedaque, Phys. Lett. B 593, 82 (2004) [nucl-th/0402051]

    Article  ADS  Google Scholar 

  44. G.M. de Divitiis, R. Petronzio, N. Tantalo, Phys. Lett. B 595, 408 (2004) [hep-lat/0405002]

    Article  ADS  Google Scholar 

  45. UKQCD Collaboration, P.A. Boyle, J.M. Flynn, A. Jüttner, C.T. Sachrajda, J.M. Zanotti, JHEP05, 016 (2007) [hep-lat/0703005]

  46. C.T. Sachrajda, G. Villadoro, Phys. Lett. B 609, 73 (2005) [hep-lat/0411033]

    Article  ADS  Google Scholar 

  47. P.A. Boyle, et al., JHEP 07, 112 (2008) [arXiv:0804.3971]

    ADS  Google Scholar 

  48. R. Frezzotti, V. Lubicz, S. Simula, Phys. Rev. D 79, 074506 (2009) [arXiv:0812.4042]

    Article  ADS  Google Scholar 

  49. R. Sommer, Nucl. Phys. B 411, 839 (1994) [hep-lat/9310022]

    Article  ADS  Google Scholar 

  50. M. Donnellan, F. Knechtli, B. Leder, R. Sommer, Nucl. Phys. B 849, 45 (2011) [arXiv:1012.3037]

    Article  ADS  MATH  Google Scholar 

  51. F.J. Jiang, B.C. Tiburzi, Phys. Rev. D 78, 114505 (2008) [arXiv:0810.1495]

    Article  ADS  Google Scholar 

  52. LHP Collaboration, D. Dolgov, et al., Phys. Rev. D 66, 034506 (2002) [hep-lat/0201021]

    Article  ADS  Google Scholar 

  53. LHP Collaboration, R.G. Edwards, et al., Phys. Rev. Lett. 96, 052001 (2006) [hep-lat/0510062]

    Article  ADS  Google Scholar 

  54. A.A. Khan, et al., Phys. Rev. D 74, 094508 (2006) [hep-lat/0603028]

    Article  ADS  Google Scholar 

  55. H.W. Lin, T. Blum, S. Ohta, S. Sasaki, T. Yamazaki, Phys. Rev. D 78, 014505 (2008) [arXiv:0802.0863]

    Article  ADS  Google Scholar 

  56. RBC/UKQCD Collaboration, T. Yamazaki, et al., Phys. Rev. Lett. 100, 171602 (2008) [arXiv:0801.4016]

    Article  ADS  Google Scholar 

  57. T. Yamazaki, et al., Phys. Rev. D 79, 114505 (2009) [arXiv:0904.2039]

    Article  ADS  Google Scholar 

  58. LHP Collaboration, S.N. Syritsyn, et al., Phys. Rev. D 81, 034507 (2010) [arXiv:0907.4194]

    Article  ADS  Google Scholar 

  59. LHP Collaboration, J.D. Bratt, et al., Phys. Rev. D 82, 094502 (2010) [arXiv:1001.3620]

    Article  ADS  Google Scholar 

  60. QCDSF/UKQCD Collaboration, D. Pleiter, et al., PoS LATTICE2010 153 (2010) [arXiv:1101.2326]

  61. QCDSF/UKQCD Collaboration, M.Göckeler, et al., PoS LATTICE2010 163 (2010) [arXiv:1102.3407]

  62. ETM Collaboration C. Alexandrou, et al., Phys. Rev. D 83, 045010 (2011) [arXiv:1012.0857]

    Article  ADS  Google Scholar 

  63. ETM Collaboration, C. Alexandrou, et al., Phys. Rev. D 83, 094502 (2011) [arXiv:1102.2208]

    Article  ADS  Google Scholar 

  64. G. Parisi, Phys. Rept. 103, 203 (1984)

    Article  ADS  Google Scholar 

  65. B.A. Thacker and G.P. Lepage, Phys. Rev. D 43, 196 (1991)

    Article  ADS  Google Scholar 

  66. M. Lüscher, in: Les Houches Summer School: Modern Perspectives in Lattice QCD, August 2009, Les Houches, France [arXiv:1002.4232]

  67. L.A. Griffiths, C. Michael, and P.E.L. Rakow, Phys. Lett. B 129, 351 (1983)

    Article  ADS  Google Scholar 

  68. M. Lüscher and U. Wolff, Nucl. Phys. B 339, 222 (1990)

    Article  ADS  Google Scholar 

  69. B. Blossier, M. Della Morte, G. von Hippel, T. Mendes, R. Sommer, JHEP 04, 094 (2009) [arXiv:0902.1265]

    Google Scholar 

  70. L. Maiani, G. Martinelli, M.L. Paciello, B. Taglienti, Nucl. Phys. B 293, 420 (1987)

    Article  ADS  Google Scholar 

  71. S. Güsken, et al., Phys. Lett. B 227, 266 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Wittig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandt, B.B., Capitani, S., Della Morte, M. et al. Form factors in lattice QCD. Eur. Phys. J. Spec. Top. 198, 79–94 (2011). https://doi.org/10.1140/epjst/e2011-01484-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2011-01484-1

Keywords

Navigation