Understanding, creating, and managing complex techno-socio-economic systems: Challenges and perspectives

Regular Article

Abstract.

This contribution reflects on the comments of Peter Allen [1], Bikas K. Chakrabarti [2], Péter Érdi [3], Juval Portugali [4], Sorin Solomon [5], and Stefan Thurner [6] on three White Papers (WP) of the EU Support Action Visioneer (www.visioneer.ethz.ch). These White Papers are entitled “From Social Data Mining to Forecasting Socio-Economic Crises” (WP 1) [7], “From Social Simulation to Integrative System Design” (WP 2) [8], and “How to Create an Innovation Accelerator” (WP 3) [9]. In our reflections, the need and feasibility of a “Knowledge Accelerator” is further substantiated by fundamental considerations and recent events around the globe. newpara The Visioneer White Papers propose research to be carried out that will improve our understanding of complex techno-socio-economic systems and their interaction with the environment. Thereby, they aim to stimulate multi-disciplinary collaborations between ICT, the social sciences, and complexity science. Moreover, they suggest combining the potential of massive real-time data, theoretical models, large-scale computer simulations and participatory online platforms. By doing so, it would become possible to explore various futures and to expand the limits of human imagination when it comes to the assessment of the often counter-intuitive behavior of these complex techno-socio-economic-environmental systems. In this contribution, we also highlight the importance of a pluralistic modeling approach and, in particular, the need for a fruitful interaction between quantitative and qualitative research approaches. newpara In an appendix we briefly summarize the concept of the FuturICT flagship project, which will build on and go beyond the proposals made by the Visioneer White Papers. EU flagships are ambitious multi-disciplinary high-risk projects with a duration of at least 10 years amounting to an envisaged overall budget of 1 billion EUR [10]. The goal of the FuturICT flagship initiative is to understand and manage complex, global, socially interactive systems, with a focus on sustainability and resilience.

References

  1. 1.
    P.M. Allen, Eur. Phys. J. Special Topics 195, 137 (2011)CrossRefADSGoogle Scholar
  2. 2.
    B.K. Chakrabarti, Eur. Phys. J. Special Topics 195, 145 (2011)CrossRefADSGoogle Scholar
  3. 3.
    P. Érdi, Eur. Phys. J. Special Topics 195, 147 (2011)CrossRefADSGoogle Scholar
  4. 4.
    J. Portugali, Eur. Phys. J. Special Topics 195, 153 (2011)CrossRefADSGoogle Scholar
  5. 5.
    S. Solomon, Eur. Phys. J. Special Topics 195, 159 (2011)CrossRefADSGoogle Scholar
  6. 6.
    S. Thurner, Eur. Phys. J. Special Topics 195, 161 (2011)CrossRefADSGoogle Scholar
  7. 7.
    D. Helbing, S. Balietti, From Social Data Mining to Forecasting Socio-Economic Crises. Eur. Phys. J. Special Topics 195, 3 (2011), http://www. visioneer.ethz.chCrossRefADSGoogle Scholar
  8. 8.
    D. Helbing, S. Balietti, From Social Simulation to Integrative System Design. Eur. Phys. J. Special Topics 195, 69 (2011), http://www. visioneer.ethz.chCrossRefADSGoogle Scholar
  9. 9.
    D. Helbing, S. Balietti, How to Create an Innovation Accelerator. Eur. Phys. J. Special Topics 195, 101 (2011), http://www. visioneer.ethz.chCrossRefADSGoogle Scholar
  10. 10.
    Fet Flagships, http://cordis.europa.eu/fp7/ict/programme/fet/flagship/Google Scholar
  11. 11.
    A. Comte, The Positive Philosophy of Auguste Comte (W. Gowans, 1868)Google Scholar
  12. 12.
    T. Parsons, The Structure of Social Action (Free Press, New York, 1949)Google Scholar
  13. 13.
    M. Weber, The Objectivity of the Sociological and Social-Political Knowledge (Free Press, 1904)Google Scholar
  14. 14.
    J.S. Coleman, Foundations of Social Theory (Belknap Press, 1994)Google Scholar
  15. 15.
    D. Helbing, Pluralistic Modeling of Complex Systems CCSS-10-009 (2010), http://ssrn.com/abstract=1646314(2010)Google Scholar
  16. 16.
    D. Helbing, S. Balietti, Sci. Cult. 76, 399 (2010), Special Issue: 15 year of econophysics researchGoogle Scholar
  17. 17.
    J. Gleick, Chaos: Making a new science (1987)Google Scholar
  18. 18.
    A.E. Douglas, Symbiotic interactions (Oxford University Press, USA, 1994)Google Scholar
  19. 19.
    V.I. Yukalov, E.P. Yukalova, D. Sornette, Modelling symbiosis in biological and social systems (2010), Arxiv preprint [arXiv:1003.2092]Google Scholar
  20. 20.
    J. Schumpeter, The Theory of Economic Development (Harvard University Press, Cambridge, 1934)Google Scholar
  21. 21.
    B.A. Huberman, E. Adar, L.R. Fine, IEEE Secur. Priv. 3, 22 (2005)CrossRefGoogle Scholar
  22. 22.
    D. Helbing, I. Farkas, T. Vicsek, Nature 407, 487 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    D. Helbing, T. Seidel, S. Laemmer, K. Peters, in Econophysics and Sociophysics - Trends and Perspectives, edited by B.K. Chakrabarti, A. Chakraborti, A. Chatterjee (Willey, Weinheim, 2006), p. 535Google Scholar
  24. 24.
    A. Kesting, et al., Transport. Res. Part C: Emerg. Technol. 16, 668 (2008)CrossRefGoogle Scholar
  25. 25.
    A. Kesting, M. Treiber, D. Helbing, Intell. Transport. Syst., IEEE Trans. 11, 172 (2000)CrossRefGoogle Scholar
  26. 26.
    A. Johansson, et al., Adv. Complex Syst. 11, 497 (2008)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    D. Helbing, A. Johansson, H.Z. Al-Abideen, Phys. Rev. E (Statistical, Nonlinear, and Soft Matter Physics) 75 (2007)Google Scholar
  28. 28.
    Supplementary information to the paper: The dynamics of crowd disasters: An empirical study, http://www.trafficforum.org/crowdturbulenceGoogle Scholar
  29. 29.
    Soms: Honors and Awards, http://www.soms.ethz.ch/people/theawards/indexGoogle Scholar
  30. 30.
    Soms: Media response, http://www.soms.ethz.ch/news/mediaresponseGoogle Scholar
  31. 31.
    G. Rzevski, Application of Complexity Science Concepts and Tools in Business: Successful Case Studies, http://www.assystcomplexity.eu/success.jspGoogle Scholar
  32. 32.
    A. Vespignani, Science 325, 425 (2009), http://www.sciencemag.org/cgi/reprint/325/5939/425.pdf; http://www.sciencemag.org/cgi/content/abstract/325/5939/425MathSciNetADSCrossRefMATHGoogle Scholar
  33. 33.
    D. Helbing, S. Balietti, in Social Self-Organization. Opinion Formation, Cooperation, and Norms, edited by D. Helbing (Springer, 2011) (forthcoming)Google Scholar
  34. 34.
    D. Helbing, H. Ammoser, C. Kuehnert, in Extreme Events in Nature and Society, edited by S. Albeverio, V. Jentsch, H. Kantz (Berlin, Springer, 2005), p. 319Google Scholar
  35. 35.
    E. Fehr, K.M. Schmidt, The Quarterly J. Econom. 114 (1999) 817MATHCrossRefGoogle Scholar
  36. 36.
    V.I. Yukalov, D. Sornette, E.P. Yukalova, ArXiv Nonlinear Sciences (2007) Eprint: nlin/0701014. http://arxiv.org/abs/nlin/0701014Google Scholar
  37. 37.
    Ethnic solidarity, segregation, and violence: a neighborhood level analysis of jerusalem (2010) Prepared for the Presenatation of the Annual Meeting of the American Political Science Association, Washington D.C., SeptemberGoogle Scholar
  38. 38.
    D. Helbing, W. Yu, Proc. Nation. Acad. Sci. 106, 3680 (2009ADSCrossRefGoogle Scholar
  39. 39.
    D. Helbing, M. Christen, Mit Rauschen Und Reibung Gegen Finanzielle Blasen (submitted to Wirtschaftswoche) (2010)Google Scholar
  40. 40.
    M. Gallegati, A. Kirman, Beyond the representative agent (1999)Google Scholar
  41. 41.
    A.P. Kirman, J. Econ. Perspect. 6, 117 (1992) http://ideas.repec.org/a/aea/jecper/v6y1992i2p117-36.htmlGoogle Scholar
  42. 42.
    A. Mazlouimian, et al., PLoS ONE (2011) (accepted)Google Scholar
  43. 43.
    R.E. Lucas Jr, J. Business 59, 401 (1986)CrossRefGoogle Scholar
  44. 44.
    P. Ekman, in Handbook of Cognition and Emotion, edited by T. Dalgleish, M. Power (John Wiley & Sons, 1999)Google Scholar
  45. 45.
    Models of Emotions, http://www.scholarpedia.org/article/Models_of_emotionGoogle Scholar
  46. 46.
    CyberEmotions. Collective Emotions in Cyberspace, http://www.cyberemotions.eu/Google Scholar
  47. 47.
    We Feel Fine. An Exploration of Human Emotion, in Six Movements, http://www.wefeelfine.org/Google Scholar
  48. 48.
    Pulse of the Nation: U.S. Mood Throughout the Day Inferred from Twitter, http://www.ccs.neu.edu/home/amislove/twittermood/Google Scholar
  49. 49.
    G. Gigerenzer, P.M. Todd, ABC Research Group. Simple Heuristics That Make Us Smart (New York, Oxford University Press)Google Scholar
  50. 50.
    G. Gigerenzer, R. Selten (eds.) Bounded Rationality: The Adaptive Toolbox (MIT Press, Cambridge, MA, 2001)Google Scholar
  51. 51.
    C.F. Camerer, G. Loewenstein, M. Rabin (eds.), Behavioral Economics (Princeton University Press, Princeton, NJ, 2004)Google Scholar
  52. 52.
    R. Topol, B. Walliser (eds.), Cognitive Economics (Elsevier, Amsterdam, 2007)Google Scholar
  53. 53.
    J. Elster, J. Econom. Liter., 36, 47 (1998)Google Scholar
  54. 54.
    R.J. Shiller, The J. Econom. Perspect. 17, 83 (2003)CrossRefGoogle Scholar
  55. 55.
    R.H. Thaler (Ed.), Advances in Behavioral Finance, Vol. II (Princeton University Press, Princeton, NJ, 2005)Google Scholar
  56. 56.
    The Computational Emotion Group at Usc, http://emotions.usc.edu/Google Scholar
  57. 57.
    D. Sornette, V.I. Yukalov, Theory Decision 70, 283 (2011)MATHCrossRefMathSciNetGoogle Scholar
  58. 58.
    Massive software, http://www.massivesoftware.com/Google Scholar
  59. 59.
    J. Elster, The cement of society: A study of social order (Cambridge, University Press, 1989)Google Scholar
  60. 60.
    M. Hechter, Principles of group solidarity (University of California, 1988)Google Scholar
  61. 61.
    J.M. Epstein, Generative Social Science: Studies in Agent-Based Computational Modeling. Princeton Studies in Complexity (Princeton University Press, 2007)Google Scholar
  62. 62.
    N. Gilbert, Agent-Based Models (Sage Publications, Inc September, 2007)Google Scholar
  63. 63.
    D. Helbing, Social Self-Organization. Opinion Formation, Cooperation, and Norms (Springer, 2011)Google Scholar
  64. 64.
    A. Johansson, D. Helbing, P.S. Shukla, Advances in Complex Systems 10, 271 (2007)MathSciNetMATHCrossRefGoogle Scholar
  65. 65.
    M. Moussaïd, et al., Proc. Royal Soc. B: Biol. Sci. 276, 2755 (2009)CrossRefGoogle Scholar
  66. 66.
    Google Flu Trends http://www.google.org/flutrends/Google Scholar
  67. 67.
    N.A. Christakis, J.H. Fowler, PloS one 5, e12948+ (2010)ADSCrossRefGoogle Scholar
  68. 68.
    M.C. González, C.A. Hidalgo, A.L. Barabási, Nature 453, 779 (2008)ADSCrossRefGoogle Scholar
  69. 69.
    J.P. Onnela, et al., Proc. Nation. Acad. Sci. 104, 7332 (2007)Google Scholar
  70. 70.
    A.L. Barabasi, Bursts: the Hidden Pattern Behind Everything We Do (Dutton, 2010), ISBN: 0525951601Google Scholar
  71. 71.
    D. Brockmann, L. Hufnagel, T. Geisel, Nature 439, 462Google Scholar
  72. 72.
    P. Turchin, Nature 454, 34 (2008)ADSCrossRefGoogle Scholar
  73. 73.
    J. Mimkes, in Econophysics and Sociophysics, edited by B.K. Chakrabarti, A. Chakraborti, A. Chatterjee (Weinheim, Willey-VCH, 2006), p. 279Google Scholar
  74. 74.
    P Illinger. Formeln der freiheit [formulas of freedom], by patrick illinger (2011), http://www.sueddeutsche.de/wissen/physik-der-menschlichen-gesellschaft-forme ln-der-freiheit-1.1061313Google Scholar
  75. 75.
    J.E. Berg, F.D. Nelson, Rietz T.A. Int. J. Forecast. 24, 285 (2008)CrossRefGoogle Scholar
  76. 76.
    D. Willer, Network exchange theory (Praeger Publishers, 1999), ISBN: 0275953785Google Scholar
  77. 77.
    D. Helbing, et al., The European Physical Journal B - Condensed Matter and Complex SystemsGoogle Scholar
  78. 78.
    C.A.S. Hallm, J.W. Day Jr, Amer. Scient. 97, 230 (2009)CrossRefGoogle Scholar
  79. 79.
    D. Helbing, Managing Complexity: Insights, Concepts, Applications, 1st edition (Springer, 2007)Google Scholar
  80. 80.
    D. Helbing, et al., PLoS Comput. Biol. 6, e1000758 (2010)MathSciNetCrossRefGoogle Scholar
  81. 81.
    J. Lorenz, et al., How social influence undermines the wisdom of crowds (2010) (submitted)Google Scholar
  82. 82.
    D. Helbing, Systemic risks in society and economics. Sante Fe Institute (2009), working paper 09-12-044. 2009. http://www.santafe.edu/research/working-papers/abstract /9596e5a57d1f9b7e8fcc289f118555ce/Google Scholar
  83. 83.
    L. Bettencourt, et al., Proc. Nation. Acad. Sci. 104, 7301 (2007)ADSCrossRefGoogle Scholar
  84. 84.
    Mit Reality Mining: Publications Page, http://reality.media.mit.edu/publications.phpGoogle Scholar
  85. 85.
    Satellite Sentinel Project: the World is Watching Because You are Watching, http://www.satsentinel.org/Google Scholar
  86. 86.
    Uk Open Data Initiative: Opening Up the Governament., http://data.gov.uk/Google Scholar
  87. 87.
    Us Open Data Initiative. http://www.data.gov/Google Scholar
  88. 88.
    The Open Society: Governments are Letting in the Light (2010), http://www.economist.com/node/15557477Google Scholar
  89. 89.
    The Futurict Knowledge Accelerator, http://www.futurict.euGoogle Scholar
  90. 90.
    D. Helbing, S. Balietti, Formulating Grand Fundamental Challenges, Visioneer white paper (2010), http://www.visioneer.ethz.chGoogle Scholar
  91. 91.
    L.C. Bollinger, Announcing the Columbia Committee on Global Thought, http://www.columbia.edu/cu/president/.../051214-committee-global-thought.htmlGoogle Scholar
  92. 92.
    A. Schmidt, M. Beigl, H.W. Gellersen, Comput. Graph. 23, 893 (1999)CrossRefGoogle Scholar
  93. 93.
    P. Lukowicz, et al., Computer 43, 92 (2010)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  • D. Helbing
    • 1
    • 2
  • S. Balietti
    • 1
  • S. Bishop
    • 3
  • P. Lukowicz
    • 4
  1. 1.ETH Zurich, CLUZurichSwitzerland
  2. 2.Santa Fe InstituteSanta FeUSA
  3. 3.Department of MathematicsUniversity College LondonLondonUK
  4. 4.University of PassauPassauGermany

Personalised recommendations