Skip to main content
Log in

Subordination pathways to fractional diffusion

  • Modelling
  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

The uncoupled Continuous Time Random Walk (CTRW) in one space-dimension and under power law regime is splitted into three distinct random walks: (rw 1), a random walk along the line of natural time, happening in operational time; (w 2), a random walk along the line of space, happening in operational time; (rw 3), the inversion of (rw 1), namely a random walk along the line of operational time, happening in natural time. Via the general integral equation of CTRW and appropriate rescaling, the transition to the diffusion limit is carried out for each of these three random walks. Combining the limits of (rw 1) and (rw 2) we get the method of parametric subordination for generating particle paths, whereas combination of (rw 2) and (rw 3) yields the subordination integral for the sojourn probability density in space - time fractional diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Barkai, Phys. Rev. E 63, 046118-1/18 (2001)

    Article  ADS  Google Scholar 

  2. P. Butzer, U. Westphal, in Fractional Calculus, Applications in Physics, edited by H. Hilfer (World Scientific, Singapore, 2000), p.1

  3. W. Feller, An Introduction to Probability Theory and its Applications, Vol. II (Wiley, New York, 1971)

  4. H.C. Fogedby, Phys. Rev. E 50, 1657 (1994)

    Article  ADS  Google Scholar 

  5. D. Fulger, E. Scalas, G. Germano, Phys. Rev. E 77, 021122 (2008)

    Article  ADS  Google Scholar 

  6. G. Germano, M. Politi, E. Scalas, R.L. Schilling, Phys. Rev. E 79, 066102 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  7. R. Gorenflo, in Proceedings of the National Workshop on Fractional Calculus and Statistical Distributions, edited by S.S. Pai, N. Sebastian, S.S. Nair, D.P. Joseph, D. Kumar (CMS Pala Campus, India, 2010), p. 1 [E-print: http://arxiv.org/abs/1004.4413]

  8. R. Gorenflo, F. Mainardi, in Fractals and Fractional Calculus in Continuum Mechanics, edited by A. Carpinteri, F. Mainardi (Springer Verlag, Wien, 1997), p. 223 [E-print: http://arxiv.org/abs/0805.3823]

  9. R. Gorenflo, F. Mainardi, in Processes with Long Range Correlations, edited by G. Rangarajan, M. Dings (Springer-Verlag, Berlin, 2003), p. 148 [E-print: http://arxiv.org/abs/0709.3990]

  10. R. Gorenflo, F. Mainardi, in Anomalous Transport, Foundations and Applications, edited by R. Klages, G. Radons, I.M. Sokolov (Wiley-VCH Verlag, Weinheim, Germany, 2008), p. 93 [E-print: arXiv:cond-mat/07050797]

  11. R. Gorenflo, F. Mainardi, A. Vivoli, Chaos, Solitons and Fractals 34, 87 (2007) [E-print http://arxiv.org/abs/cond-mat/0701126]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. R. Hilfer, in Anomalous Transport, Foundations and Applications, edited by R. Klages, G. Radons, I.M. Sokolov (Wiley-VCH Verlag, Weinheim, Germany, 2008), p. 17

  13. R. Hilfer, Fractals 3, 211 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Hilfer, L. Anton, Phys. Rev. E 51, R848 (1995)

    Article  ADS  Google Scholar 

  15. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006)

  16. D. Kleinhans, R. Friedrich, Phys. Rev. E 76, 061102 (2007)

    Article  ADS  Google Scholar 

  17. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity (Imperial College Press, London, 2010)

  18. F. Mainardi, Yu. Luchko, G. Pagnini, Fract. Calculus and Appl. Analysis 4, 153 (2001) [E-print: http://arxiv.org/abs/cond-mat/0702419]

    MathSciNet  MATH  Google Scholar 

  19. F. Mainardi, G. Pagnini, R.K. Saxena, J. Computational and Appl. Mathematics 178, 321 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. A.M. Mathai, R.K. Saxena, H.J. Haubold, The H-function, Theory and Applications (Springer Verlag, New York, 2010)

  21. M.M. Meerschaert, D.A. Benson, H.P. Scheffler, B. Baeumer, Phys. Rev. E 65, 041103/1 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  22. M.M. Meerschaert, H.P. Scheffler, J. Appl. Prob. 41, 623 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Metzler, J. Klafter, J. Phys. A. Math. Gen. 37, R161 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)

  25. B. Rubin, Fractional Integrals and Potentials (Addison-Wesley & Longman, Harlow, 1996) [Pitman Monographs and Surveys in Pure and Applied Mathematics No. 82]

  26. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach, New York, 1993)

  27. E. Scalas, R. Gorenflo, F. Mainardi, Phys. Rev. E 69, 011107 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  28. Z. Tomovski, R. Hilfer, H.M. Srivastava, Integral Transforms Spec. Funct. 21, 797 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. G.H. Weiss, Aspects and Applications of Random Walks (North-Holland, Amsterdam, 1994)

  30. Y. Zhang, M.M. Meerschaert, B. Baeumer, Phys. Rev. E. 78, 036705 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Mainardi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorenflo, R., Mainardi, F. Subordination pathways to fractional diffusion. Eur. Phys. J. Spec. Top. 193, 119–132 (2011). https://doi.org/10.1140/epjst/e2011-01386-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2011-01386-2

Keywords

Navigation