The European Physical Journal Special Topics

, Volume 192, Issue 1, pp 207–226 | Cite as

Star-drops formed by periodic excitation and on an air cushion – A short review

Minireview

Abstract.

When simply put on a solid, a liquid drop usually adopts the shape of a spherical cap or a puddle depending on its volume and on the wetting conditions. However, when the drop is subjected to a periodic field, a parametric excitation can induce a transition of shape and can break the drop’s initial axial symmetry, provided that the pinning forces at the contact-line are weak enough. Therefore, a standing wave appears at the drop interface and induces a periodic motion, with a frequency that equals half the excitation frequency. In the first part, we review the different situations where star drops can be generated from various types of periodic excitations. In the second part, we show that similar star drops can occur in a much less intuitive fashion when the drop is put on an air cushion, where no periodic motion is imposed a priori. Preliminary experiments as well as theoretical clues for a hydrodynamic interpretation, suggest that the periodic vibration is due to an inertial instability in the air layer below the drop.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Lamb, Hydrodynamics (Cambridge University Press, Cambridge, UK, 1932)Google Scholar
  2. 2.
    A.J. James, B. Vukasinovic, M.K. Smith, A. Glezer, J. Fluid Mech. 476, 1 (2003)MATHADSGoogle Scholar
  3. 3.
    X. Noblin, A. Buguin, F. Brochard-Wyart, Eur. Phys. J. E 14, 395 (2004)CrossRefGoogle Scholar
  4. 4.
    X. Noblin, A. Buguin, F. Brochard-Wyart, Phys. Rev. Lett. 94, 166102 (2005)CrossRefADSGoogle Scholar
  5. 5.
    N. Yoshiyasu, K. Matsuda, R. Takaki, J. Phys. Soc. Jpn. 65, 2068 (1996)CrossRefADSGoogle Scholar
  6. 6.
    P.G. de Gennes, Rev. Mod. Phys. 57, 827 (1985)CrossRefADSGoogle Scholar
  7. 7.
    S. Courty, G. Lagubeau, T. Tixier, Phys. Rev. E 73, 045301(R) (2006)ADSGoogle Scholar
  8. 8.
    F. Celestini, R. Kofman, Phys. Rev. E 73, 041602 (2006)CrossRefADSGoogle Scholar
  9. 9.
    V. Palero, J. Lobera, P. Brunet, M. Pilar Aroyo (in preparation)Google Scholar
  10. 10.
    L. Duchemin, J.R. Lister, U. Lange, J. Fluid Mech. 533, 161 (2005)CrossRefMATHADSMathSciNetGoogle Scholar
  11. 11.
    P.H. Hausmesser et al., Rev. Sci. Instr. 73, 3275 (2002)CrossRefADSGoogle Scholar
  12. 12.
    E. Hervieu, N. Coutris, C. Boichon, Nucl. Eng. Design 204, 167 (2001)CrossRefGoogle Scholar
  13. 13.
    K. Adachi, R. Takaki, J. Phys. Soc. Jpn. 53, 4184 (1984)CrossRefADSGoogle Scholar
  14. 14.
    R. Takaki, K. Adachi, J. Phys. Soc. Jpn. 54, 2462 (1985)CrossRefADSGoogle Scholar
  15. 15.
    N.J. Holter, W.R. Glasscock, J. Acous. Soc. Am. 24, 682 (1952)CrossRefADSGoogle Scholar
  16. 16.
    D.E. Strier, A.A. Duarte, H. Ferrari, G.B. Mindlin, Physica A 283, 261 (2000)CrossRefADSGoogle Scholar
  17. 17.
    N. Tokugawa, R. Takaki, J. Phys. Soc. Jpn. 63, 1758 (1994)CrossRefADSGoogle Scholar
  18. 18.
    A. Snezhko, E. Ben Jacob, I.S. Aranson, New J. Phys. 10, 043034 (2008)CrossRefADSGoogle Scholar
  19. 19.
    M.A. Goldshtick, V.M. Khanin, V.G. Ligai, J. Fluid Mech. 166, 1 (1986)CrossRefADSGoogle Scholar
  20. 20.
    J.H. Snoeijer, P. Brunet, J. Eggers, Phys. Rev. E 79, 036307 (2009)CrossRefADSGoogle Scholar
  21. 21.
    Y. Couder, E. Fort, C.H. Gautier, A. Boudaoud, Phys. Rev. Lett. 94, 177801 (2005)CrossRefADSGoogle Scholar
  22. 22.
    S. Dorbolo, D. Terwagne, N. Wandewalle, T. Gilet, New J. Phys. 10, 113021 (2008)CrossRefADSGoogle Scholar
  23. 23.
    L. Rayleigh, The Theory of Sound, Vol. 1, 2nd edn. (New York, Dover, 1945), p. 81Google Scholar
  24. 24.
    M. Versluis, D.E. Goertz, P. Palanchon, I.L. Heitman, S.M. van der Meer, B. Dollet, N. de Jong, D. Lohse, Phys. Rev. E 82, 026321 (2010)CrossRefADSGoogle Scholar
  25. 25.
    M. Okada, M. Okada, Exp. Fluids 41, 789 (2006)CrossRefGoogle Scholar
  26. 26.
    X.-M. Li, D. Reinhouldt, M. Crego-Calama, Chem. Soc. Rev. 36, 1350 (2007)CrossRefGoogle Scholar
  27. 27.
    K. Kumar, L.S. Tuckerman, J. Fluid Mech. 279, 49 (1994)CrossRefMATHADSMathSciNetGoogle Scholar
  28. 28.
    S. Douady, J. Fluid Mech. 221, 383 (1990)CrossRefADSGoogle Scholar
  29. 29.
    M. Perlin, W.W. Schultz, Ann. Rev. Fluid Mech. 32, 241 (2000)CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    C.L. Shen, W.J. Xie, B. Wei, Phys. Rev. E 81, 046305 (2010)CrossRefADSGoogle Scholar
  31. 31.
    Y. Fautrelle, J. Etay, S. Daugan, J. Fluid Mech. 527, 285 (2005)CrossRefMATHADSGoogle Scholar
  32. 32.
    M. Papoular, C. Parayre, Phys. Rev. Lett. 78, 2120 (1997)CrossRefADSGoogle Scholar
  33. 33.
    M. Perez, Y. Brechet, L. Salvo, M. Papoular, M. Suery, Europhys. Lett. 47, 189 (1999)CrossRefADSGoogle Scholar
  34. 34.
    J.G. Leidenfrost, De Aquae Communis Nonnullis Qualitatibus Tractatus (Duisburg on Rhine, 1756)Google Scholar
  35. 35.
    P. Casal, H. Gouin, Int. J. Engng Sci. 32, 1553 (1994)CrossRefMATHGoogle Scholar
  36. 36.
    J.D. Bernardin, I. Mudawar, Trans. ASME - J. Heat Transf. 121, 894 (1998)CrossRefGoogle Scholar
  37. 37.
    A.-L. Biance, C. Clanet, D. Quéré, Phys. Fluids 15, 1632 (2003)CrossRefADSGoogle Scholar
  38. 38.
    P. Aussillous, D. Quéré, Nature 411, 924 (2001)CrossRefADSGoogle Scholar
  39. 39.
    G. McHale, S.J. Elliott, M.I. Newton, D.L. Herbertson, K. Esmer, Langmuir 25, 529 (2009)CrossRefGoogle Scholar
  40. 40.
    E. Bormashenko, R. Pogreb, G. Whyman, A. Musin, Y. Bormashenko, Z. Barkay, Langmuir 25, 1893 (2009)CrossRefGoogle Scholar
  41. 41.
    E.J. Hinch, A. Lemaitre, J. Fluid Mech. 273, 315 (1994)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  1. 1.Institut d’Électronique de Microélectronique et de NanotechnologiesVilleneuve d’AscqFrance
  2. 2.Physics of Fluids Group and J.M. Burgers Centre for Fluid Dynamics, University of TwenteAE EnschedeThe Netherlands

Personalised recommendations