The European Physical Journal Special Topics

, Volume 192, Issue 1, pp 175–184 | Cite as

Different types of nonlinear convective oscillations in a multilayer system under the joint action of buoyancy and thermocapillary effect

  • I.B. Simanovskii
  • A. Viviani
  • F. Dubois
  • J.-C. Legros
Regular Article

Abstract.

The nonlinear development of oscillatory instability under the joint action of buoyant and thermocapillary effects in a multilayer system, is investigated. The nonlinear convective regimes are studied by the finite difference method. Two different types of boundary conditions – periodic boundary conditions and rigid heat-insulated lateral walls, are considered. It is found that in the case of periodic boundary conditions, the competition of both mechanisms of instability may lead to the development of specific types of flow: buoyant-thermocapillary traveling wave and pulsating traveling wave. In the case of rigid heat-insulated boundaries, various types of nonlinear flows – symmetric and asymmetric oscillations, have been found.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I.B. Simanovskii, A.A. Nepomnyashchy, Convective Instabilities in Systems with Interface (Gordon and Breach, London, 1993)Google Scholar
  2. 2.
    A. Nepomnyashchy, I. Simanovskii, J.-C. Legros, Interfacial Convection in Multilayer Systems (Springer, New York, 2006)Google Scholar
  3. 3.
    G.Z. Gershuni, E.M. Zhukhovitsky, Convective Stability of Incompressible Fluid (Keter, Jerusalem, 1976)Google Scholar
  4. 4.
    J.R.A. Pearson, J. Fluid Mech. 4, 489 (1958)CrossRefMATHADSGoogle Scholar
  5. 5.
    A.A. Nepomnyashchy, I.B. Simanovskii, Fluid Dyn. 19, 494 (1984)CrossRefADSGoogle Scholar
  6. 6.
    A. Juel, J.M. Burgess, W.D. McCormick, J.B. Swift, H.L. Swinney, Physica D 143, 169 (2000)CrossRefMATHADSMathSciNetGoogle Scholar
  7. 7.
    A.A. Nepomnyashchy, I.B. Simanovskii, L.M. Braverman, Phys. Fluids 17, 022103 (2005)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    A. Prakash, J.N. Koster, Europ. J. Mechanics B/Fluids 12, 635 (1993)MATHGoogle Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  • I.B. Simanovskii
    • 1
  • A. Viviani
    • 2
  • F. Dubois
    • 3
  • J.-C. Legros
    • 3
  1. 1.Department of MathematicsTechnion – Israel Institute of TechnologyHaifaIsrael
  2. 2.Seconda Universita di Napoli (SUN) Dipartimento di Ingegneria Aerospaziale e Meccanica (DIAM)AversaItaly
  3. 3.Universite Libre de Bruxelles, Service de Chimie Physique EPBrusselsBelgium

Personalised recommendations