The European Physical Journal Special Topics

, Volume 192, Issue 1, pp 163–173 | Cite as

Threshold onset of Marangoni convection in narrow channels

  • A. Mizev
  • M. Denisova
  • K. Kostarev
  • R. Birikh
  • A. Viviani
Regular Article

Abstract.

There are several experimental studies where the Marangoni convection begins only at a certain difference in the surface tension, i.e. in a threshold way. This effect contradicts a traditional point of view according to which the surface flow in Newtonian fluids should begin at an arbitrary small difference in surface tension. To explore this phenomenon in detail we investigated the initiation of the Marangoni convection at a free liquid surface caused by injection of a droplet of surfactant. It was found that the surface motion occurs in a threshold manner, i.e. when a surfactant concentration in the droplet approaches a certain critical value. The described phenomenon is more important in narrow channels and essentially depends both on the purity of the basic liquid and on the surfactant used. Based on the experimental results, a hypothesis about an important role of residual impurities contained in basic liquids which can thoroughly change a surface rheology was suggested. The theoretical model taking into account special rheological properties in the free surface is considered. The results of the numerical simulation are in a good agreement with the experimental observations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.B. Lewis, H.R.C. Pratt, Nature 171, 1155 (1953)CrossRefADSGoogle Scholar
  2. 2.
    R. Birikh, A. Zuev, K. Kostarev, R. Rudakov, Fluid Dyn. 41, 514 (2006)CrossRefADSGoogle Scholar
  3. 3.
    D. Agble, M.A. Mendes-Tatsis, Int. J. Heat Mass Transfer 43, 1025 (2000)CrossRefMATHGoogle Scholar
  4. 4.
    D. Agble, M.A. Mendes-Tatsis, Int. J. Heat Mass Transfer 44, 1439 (2001)CrossRefMATHGoogle Scholar
  5. 5.
    S. Slavtchev, M.A. Mendes-Tatsis, Int. J. Heat Mass Transfer 47, 3269 (2004)CrossRefMATHGoogle Scholar
  6. 6.
    K. Bushueva, M. Denisova, A. Zuev, K. Kostarev, Colloid J. 70, 416 (2008)CrossRefGoogle Scholar
  7. 7.
    J.C. Berg, A. Acrivos, Chem. Eng. Sci. 20, 737 (1965)CrossRefGoogle Scholar
  8. 8.
    A. Frumkin, V.G. Levich, Zh. Fiz. Khim. 21, 1183 (1947) (in Russian)Google Scholar
  9. 9.
    R. Clift, J.R. Grace, W.E. Weber, Bubbles, Drops, and Particles (Academic Press, New York, 1978), p. 380Google Scholar
  10. 10.
    S Takagi et al., Fluid Dyn. Res. 41, 065003 (2009)CrossRefADSGoogle Scholar
  11. 11.
    A. Mizev, Phys. Fluids 17, 122107 (2005)CrossRefADSGoogle Scholar
  12. 12.
    Traube I., Liebigs Ann. Chem. 265, 27 (1891) (in German)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  • A. Mizev
    • 1
  • M. Denisova
    • 1
  • K. Kostarev
    • 1
  • R. Birikh
    • 1
  • A. Viviani
    • 2
  1. 1.Institute of Continuous Media MechanicsPermRussia
  2. 2.Seconda Universita di Napoli, Dipartimento di Ingegneria Aerospaziale MeccanicaAversaItaly

Personalised recommendations