The European Physical Journal Special Topics

, Volume 192, Issue 1, pp 109–120 | Cite as

Observation of Marangoni flow in ordinary and self-rewetting fluids using optical diagnostic systems

  • A. Cecere
  • R.D. Paola
  • R. Savino
  • Y. Abe
  • L. Carotenuto
  • S.V. Vaerenbergh
Regular Article

Abstract.

Dilute aqueous solutions of alcohols with a high number of carbon atoms can be considered as self-rewetting fluids due to their properties associated to an anomalous dependency of the surface tension with temperature in some ranges of concentrations. In this paper research activities focused on numerical simulations and laboratory experiments of the behaviour of a thin layer of liquid subject to a horizontal thermal gradient. The investigated liquids include ordinary liquids and water/alcohols mixtures. Physical properties measurements, in particular surface tension and refractive index, are also presented. Flow visualization and interferometric analysis have been carried out using optical diagnostic systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.C. Legros, M.C. Limbourg-Fontaine, G. Petre, Acta Astronautica 11, 143 (1984)CrossRefADSGoogle Scholar
  2. 2.
    D. Villers, K. Platten, Appl. Sci. Res. 47, 177 (1990)CrossRefGoogle Scholar
  3. 3.
    J.C. Legros, Acta Astronautica 13, 697 (1986)CrossRefGoogle Scholar
  4. 4.
    G. Petre, M.A. Azouni, K. Tsinyama, Appl. Sci. Res. 50, 97 (1993)CrossRefGoogle Scholar
  5. 5.
    R. Savino, R. Di Paola, A. Cecere, Y. Abe, K. Tanaka, M. Nakagawa, M. Saito, 38th International Conference on Environmental Systems, San Francisco, California, USA (2008)Google Scholar
  6. 6.
    R. Savino, A. Cecere, R. Di Paola, Int. J. Heat and Fluid Flow 30, 380 (2009)CrossRefGoogle Scholar
  7. 7.
    R. Vochten, G. Ptr, J. Coll. Interf. Sci. 42, 320 (1973)CrossRefGoogle Scholar
  8. 8.
    R. Savino, A. Cecere, R. Di Paola, Y. Abe, D. Castagnolo, R. Fortezza, Acta Astronautica 65, 1582 (2009)CrossRefADSGoogle Scholar
  9. 9.
    M. Kuramae, M. Suzuki, Chem. Eng. Jpn. 26, 230 (1993)CrossRefGoogle Scholar
  10. 10.
    Y. Abe, A. Iwasaki, K. Tanaka, Ann. N.Y. Acad. Sci. 1027, 269 (2004)CrossRefADSGoogle Scholar
  11. 11.
    M.A. Azouni, C. Normand, G. Petre, J. Colloid Interf. Sci. 239, 509 (2001)CrossRefGoogle Scholar
  12. 12.
    Homepage of DataPhysics Instruments GmbH (2010) http://www.dataphysics.deGoogle Scholar
  13. 13.
    S. Bashforth, J.C. Addams, An Attempt to Test the Theory of Capillary Action (Bell and Co, 1882)Google Scholar
  14. 14.
    M. Takeda, H. Ina, S. Kobayashi, J. Opt. Soc. 72, 156 (1982)CrossRefADSGoogle Scholar
  15. 15.
    M.A. Herrez, D.R. Burton, M.J. Lalor, M.A. Gdeisat, Appl. Opt. 41, 7437 (2002)CrossRefADSGoogle Scholar
  16. 16.
    R. Monti, Physics of Fluids in Microgravity (Taylor and Francis, 2001)Google Scholar
  17. 17.
    C.S. Vikram, W.K. Witherow, Int. J. Light Electron Optics 114, 118 (2003)CrossRefGoogle Scholar
  18. 18.
    R. Savino, R. Di Paola, A. Cecere, R. Fortezza, Acta Astronautica 67, 1030 (2010)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  • A. Cecere
    • 1
  • R.D. Paola
    • 1
  • R. Savino
    • 1
  • Y. Abe
    • 2
  • L. Carotenuto
    • 3
  • S.V. Vaerenbergh
    • 4
  1. 1.Universita degli Studi di Napoli Federico II, Dipartimento di Ingegneria AerospazialeNapoliItaly
  2. 2.AIST-National Institute of Advanced Industrial Science Technology, TsukubaIbarakiJapan
  3. 3.MARS Center Microgravity Advanced Research and Support. CenterNapoliItaly
  4. 4.Universite Libre de Bruxelles, Service de Chimie Physique EPBruxellesBelgium

Personalised recommendations