The European Physical Journal Special Topics

, Volume 192, Issue 1, pp 83–93 | Cite as

Numerical study of convection induced by evaporation in cylindrical geometry

  • B. Trouette
  • E. Chénier
  • C. Delcarte
  • B. Guerrier
Regular Article

Abstract.

Numerical simulations of convection induced by solvent evaporation during the drying of a polymer solution are considered. This paper focuses on the transient thermal regime occurring at the beginning of the drying and transient solutal effects are not taken into account. The onset of convection (Bénard-Marangoni and Rayleigh-Bénard) is studied for a large range of initial thicknesses and viscosities. Several stochastic models are compared to analyze the influence of the perturbation description on the transition thresholds. Two-dimensional (2D) and three-dimensinal (3D) models are shown to give close results. The 3D model is used to characterize the pattern evolution during the drying. In the case of surface tension driven convection, a method is developed to describe the cells morphology and their time evolution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Pearson, J. Fluid Mech. 4, 489 (1958)CrossRefMATHADSGoogle Scholar
  2. 2.
    F. Busse, Rep. Prog. Phys. 41, 1930 (1978)CrossRefADSGoogle Scholar
  3. 3.
    J. Reichenbach, H. Linde, J. Colloid Interf. Sci. 84, 433 (1981)CrossRefGoogle Scholar
  4. 4.
    D. Goussis, R. Kelly, Int. J. Heat Mass Transfer 33, 2237 (1990)CrossRefGoogle Scholar
  5. 5.
    P. Colinet, J.C. Legros, M.G. Velarde, Nonlinear Dynamics of Surface-Tension-Driven Instabilities (Wiley-VCH, 2001)Google Scholar
  6. 6.
    D. Merkt, M. Bestehorn, Physica D 185, 196 (2003)CrossRefMATHADSMathSciNetGoogle Scholar
  7. 7.
    P. Colinet, L. Joannes, C.S. Iorio, B. Haute, M. Bestehorn, G. Lebon, J.C. Legros, Adv. Space Res. 32, 119 (2003)CrossRefADSGoogle Scholar
  8. 8.
    O. Ozen, R. Narayanan, Phys. Fluids 16, 4644 (2004)CrossRefADSGoogle Scholar
  9. 9.
    C. Moussy, G. Lebon, J. Margerit, Eur. Phys. J. B 40, 327 (2004)CrossRefADSGoogle Scholar
  10. 10.
    G. Toussaint, H. Bodiguel, F. Doumenc, B. Guerrier, C. Allain, Int. J. Heat Mass Transfer 51, 4228 (2008)CrossRefMATHGoogle Scholar
  11. 11.
    O. Touazi, E. Chénier, F. Doumenc, B. Guerrier, Int. J. Heat Mass Transfer 53, 656 (2010)CrossRefMATHGoogle Scholar
  12. 12.
    F. Doumenc, T. Boeck, M. Rossi, B. Guerrier, J. Fluid Mech. 648, 521 (2010)CrossRefMATHADSGoogle Scholar
  13. 13.
    O. Bouizi, C. Delcarte, Int. J. Numer. Meth. Fluids 50, 947 (2006)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    M. Matsumoto, T. Nishimura, ACM Trans. Model. Computer Simul. 8 (1998)Google Scholar
  15. 15.
    Y. Rozanov, Processus aléatoires (MIR, Moscou, 1975)Google Scholar
  16. 16.
    E. Chénier, C. Desceliers, C. Delcarte, B. Trouette, F. Doumenc, B. Guerrier, Sensitivity of diffusive-convective transition to the initial conditions in a transient Bénard-Marangoni problem, in International Heat Transfer Conference, IHTC14 (2010)Google Scholar
  17. 17.
    M. Médale, P. Cerisier, Numer. Heat Transfer 42, 55 (2002)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  • B. Trouette
    • 1
  • E. Chénier
    • 2
  • C. Delcarte
    • 1
  • B. Guerrier
    • 3
  1. 1.Univ. Paris-Sud XI, LIMSI-CNRSOrsay CedexFrance
  2. 2.Univ. Paris-Est, Lab. MSMEMarne-la-ValléeFrance
  3. 3.UPMC Univ. Paris VI, Univ. Paris-Sud, CNRS, lab. FASTOrsay CedexFrance

Personalised recommendations