The European Physical Journal Special Topics

, Volume 192, Issue 1, pp 29–39 | Cite as

Accumulation of particles in time-dependent thermocapillary flow in a liquid bridge. Modeling of experiments

  • D. Melnikov
  • D. Pushkin
  • V. Shevtsova
Regular Article

Abstract.

The study addresses the phenomenon of accumulation of rigid tracer particles suspended in a time-dependent thermocapillary flow in a liquid bridge. We report the results of the three-dimensional numerical modeling of recent experiments [1,2] in a non-isothermal liquid column. Exact physical properties of both liquids and particles are used for the modeling. Two liquids are investigated: sodium nitrate (NaNO3) and n-decane (C10H22). The particles are modeled as perfect spheres suspended in already well developed time-dependent thermocapillary flow. The particle dynamics is described by the Maxey-Riley equation. The results of our simulations are in excellent agreement with the experimental observations. For the first time we reproduced numerically formation of the particle accumulation structure (PAS) both under gravity and under weightlessness conditions. Our analysis confirms the experimental observations that the existence of PAS depends on the strength of the flow field, on the ratio between liquid and particle density, and on the particle size.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Schwabe, A. Mizev, S. Tanaka, H. Kawamura, Microgravity Sci. Technol. 18, 117 (2006)CrossRefGoogle Scholar
  2. 2.
    D. Schwabe, A. Mizev, M. Udhayasankar, S. Tanaka, Phys. Fluids 19, 072102 (2007)CrossRefADSGoogle Scholar
  3. 3.
    M. Wanschura, V.M. Shevtsova, H.C. Kuhlmann, H.J. Rath, Phys. Fluids 5, 912 (1995)CrossRefADSGoogle Scholar
  4. 4.
    J. Leypoldt, H.C. Kuhlmann, H.J. Rath, J. Fluid Mech. 414, 285 (2000)CrossRefMATHADSGoogle Scholar
  5. 5.
    V.M. Shevtsova, D.E. Melnikov, J.C. Legros, Phys. Rev. E 68, 066311 (2003)CrossRefADSGoogle Scholar
  6. 6.
    D. Schwabe, P. Hintz, S. Frank, Microgravity Sci. Technol. 9, 163 (1996)Google Scholar
  7. 7.
    M. Nishimura, I. Ueno, K. Nishino, H. Kawamura, Exp. Fluids 38, 285 (2005)CrossRefGoogle Scholar
  8. 8.
    S. Tanaka, H. Kawamura, I. Ueno, Phys. Fluids 18, 067103 (2006)CrossRefADSGoogle Scholar
  9. 9.
    Y. Abe, I. Ueno, H. Kawamura, Microgravity Sci. Technol. 19, 84 (2007)CrossRefGoogle Scholar
  10. 10.
    I. Ueno, S. Tanaka, H. Kawamura, Phys. Fluids 15, 408 (2003)CrossRefADSGoogle Scholar
  11. 11.
    D.E. Melnikov, V.M. Shevtsova, J.C. Legros, Phys. Fluids 16, 1746 (2004)CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    R. Peyret, T.D. Taylor, Computational Methods for Fluid Flow (Springer-Verlag, Berlin, 1990), p. 359Google Scholar
  13. 13.
    D.E. Melnikov, V.M. Shevtsova, J.C. Legros, Phys. Fluids 16, 1746 (2004)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    V.M. Shevtsova, D.E. Melnikov, J.C. Legros, Phys. Fluids 13, 2851 (2001)CrossRefADSGoogle Scholar
  15. 15.
    M.R. Maxey, J.J. Riley, Phys. Fluids 26, 883 (1983)CrossRefMATHADSGoogle Scholar
  16. 16.
    D.E. Melnikov, V.M. Shevtsova, Fluid Dyn. Mater. Process. 1, 189 (2005)Google Scholar
  17. 17.
    I. Ueno, Y. Abe, K. Noguchi, H. Kawamura, Adv. Space Res. 41, 2145 (2008)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  • D. Melnikov
    • 1
  • D. Pushkin
    • 1
  • V. Shevtsova
    • 1
  1. 1.Université Libre de Bruxelles, MRCBruxellesBelgium

Personalised recommendations