The European Physical Journal Special Topics

, Volume 192, Issue 1, pp 3–12 | Cite as

The mechanics of particle accumulation structures in thermocapillary flows

Regular Article

Abstract.

The motion of small particles suspended in a cylindrical thermocapillary liquid bridge is considered. Owing to geometry and surface stresses the streamlines gather near the cylindrical free surface and provoke particle–free-surface collisions. We show numerically that tracers which are perfect but of finite size can accumulate on closed trajectories. A simple model is proposed to explain the attraction of particles to the closed trajectory based on the flow topology in the vicinity of a closed streamline which comes sufficiently close to the free surface and on particle–free-surface collisions which transfer particles among different streamlines.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Haller, T. Sapsis, Physica D 237, 573 (2008)CrossRefMATHADSMathSciNetGoogle Scholar
  2. 2.
    D. Schwabe, P. Hintz, S. Frank, Microgravity Sci. Technol. 9, 163 (1996)Google Scholar
  3. 3.
    S. Tanaka, H. Kawamura, I. Ueno, D. Schwabe, Phys. Fluids 18, 067103 (2006)CrossRefADSGoogle Scholar
  4. 4.
    D. Schwabe, A.I. Mizev, M. Udhayasankar, S. Tanaka, Phys. Fluids 19, 072102 (2007)CrossRefADSGoogle Scholar
  5. 5.
    I. Ueno, Y. Abe, K. Noguchi, H. Kawamura, Adv. Space Res. 41, 2145 (2008)CrossRefADSGoogle Scholar
  6. 6.
    D. Schwabe, S. Tanaka, A. Mizev, H. Kawamura, Microgravity Sci. Technol. 18, 117 (2006)CrossRefGoogle Scholar
  7. 7.
    M.K. Smith, S.H. Davis, J. Fluid Mech. 132, 119 (1983)CrossRefMATHADSGoogle Scholar
  8. 8.
    J. Leypoldt, H.C. Kuhlmann, H.J. Rath, J. Fluid Mech. 414, 285 (2000)CrossRefMATHADSGoogle Scholar
  9. 9.
    H.C. Kuhlmann, C. Nienhüser,in Interfacial Fluid Dynamics and Transport Processes, edited by R. Narayanan, D. Schwabe (Springer, Berlin, Heidelberg, 2003), Lecture Notes in Physics, vol. 628, p. 213Google Scholar
  10. 10.
    Y. Abe, I. Ueno, H. Kawamura, Interdisciplinary Transport Phenomena (2009)Google Scholar
  11. 11.
    M. Wanschura, V.S. Shevtsova, H.C. Kuhlmann, H.J. Rath, Phys. Fluids 7, 912 (1995)CrossRefMATHADSGoogle Scholar
  12. 12.
    J. Leypoldt, H.C. Kuhlmann, H.J. Rath, Adv. Space Res. 29, 645 (2002)CrossRefADSGoogle Scholar
  13. 13.
    H.C. Kuhlmann, H.J. Rath, Phys. Fluids A 5, 2117 (1993)CrossRefADSGoogle Scholar
  14. 14.
    H.G. Schuster, Deterministic Chaos, 2nd edn. (VCH Verlagsgesellschaft, 1988)Google Scholar
  15. 15.
    A.L. Yarin, T.A. Kowalewski, W.J. Hiller, S. Koch, Phys. Fluids 8, 1130 (1996)CrossRefMATHADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  1. 1.Institute of Fluid Mechanics and Heat Transfer, Vienna University of TechnologyViennaAustria

Personalised recommendations