Skip to main content

Cluster dynamics and cluster size distributions in systems of self-propelled particles

Abstract.

Systems of self-propelled particles (SPP) interacting by a velocity alignment mechanism in the presence of noise exhibit rich clustering dynamics. Often, clusters are responsible for the distribution of (local) information in these systems. Here, we investigate the properties of individual clusters in SPP systems, in particular the asymmetric spreading behavior of clusters with respect to their direction of motion. In addition, we formulate a Smoluchowski-type kinetic model to describe the evolution of the cluster size distribution (CSD). This model predicts the emergence of steady-state CSDs in SPP systems. We test our theoretical predictions in simulations of SPP with nematic interactions and find that our simple kinetic model reproduces qualitatively the transition to aggregation observed in simulations.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Three Dimensional Animals Groups, edited by J.K. Parrish W.M. Hamner (Cambridge University Press, Cambridge, UK, 1997)

  2. 2.

    A. Cavagna, et al., Proc. Natl. Acad. Sci. 107, 11865 (2010)

    Article  ADS  Google Scholar 

  3. 3.

    K. Bhattacharya, T. Vicsek, New J. Phys. 12, 093019 (2010)

    Article  ADS  Google Scholar 

  4. 4.

    D. Helbing, I. Farkas, T. Vicsek, Nature (London) 407, 487 (2000)

    Article  ADS  Google Scholar 

  5. 5.

    J. Buhl, et al., Science 312, 1402 (2006)

    Article  ADS  Google Scholar 

  6. 6.

    P. Romanczkuk, I.D. Couzin, L. Schimansky-Geier, Phy. Rev. Lett. 102, 010602 (2009)

    Article  ADS  Google Scholar 

  7. 7.

    H.P. Zhang, et al., Proc. Natl. Acad. Sci. 107, 13626 (2010)

    Article  ADS  Google Scholar 

  8. 8.

    V. Schaller, et al., Nature 467, 73 (2010)

    Article  ADS  Google Scholar 

  9. 9.

    V. Narayan, S. Ramaswamy, N. Menon, Science 317, 105 (2007)

    Article  ADS  Google Scholar 

  10. 10.

    A. Kudrolli, G. Lumay, D. Volfson, L.S. Tsimring, Phys. Rev. Lett. 100, 058001 (2008)

    Article  ADS  Google Scholar 

  11. 11.

    A. Kudrolli, Phys. Rev. Lett. 104, 088001 (2010)

    Article  ADS  Google Scholar 

  12. 12.

    J. Deseigne, O. Dauchot, H. Chaté, Phys. Rev. Lett. 105, 098001 (2010)

    Article  ADS  Google Scholar 

  13. 13.

    F. Peruani, A. Deutsch, M. Bär, Phys. Rev. E 74, 030904 (2006)

    Article  ADS  Google Scholar 

  14. 14.

    F. Peruani, A. Deutsch, M. Bär, Eur. Phys. J. Special Topics 157, 111 (2008)

    Article  ADS  Google Scholar 

  15. 15.

    A. Baskaran, M.C. Marchetti, Phys. Rev. E 77, 011920 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  16. 16.

    A. Baskaran, M.C. Marchetti, Phys. Rev. Lett. 101, 268101 (2008)

    Article  ADS  Google Scholar 

  17. 17.

    T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, O. Shochet, Phys. Rev. Lett. 75, 1226 (1995)

    Article  ADS  Google Scholar 

  18. 18.

    H. Chaté, et al., Eur. Phys. J. B 64, 451 (2008)

    Article  ADS  Google Scholar 

  19. 19.

    H. Chaté, F. Ginelli, G. Grégoire, F. Raynaud, Phys. Rev. E 77, 046113 (2008)

    Article  ADS  Google Scholar 

  20. 20.

    S. Mishra, A. Baskaran, M.C. Marchetti, Phys. Rev. E 81, 061916 (2010)

    Article  ADS  Google Scholar 

  21. 21.

    F. Ginelli, F. Peruani, M. Bär, H. Chaté, Phys. Rev. Lett. 104, 184502 (2010)

    Article  ADS  Google Scholar 

  22. 22.

    M. von Smoluchowski, Z. Phys. Chem. 92, 129 (1917)

    Google Scholar 

  23. 23.

    C. Huepe, M. Aldana, Phys. Rev. Lett. 92, 168701 (2004)

    Article  ADS  Google Scholar 

  24. 24.

    Y. Yang, J. Elgeti, G. Gompper, Phys. Rev. E 78, 061903 (2008)

    Article  ADS  Google Scholar 

  25. 25.

    F. Peruani, et al. (2010) (unpublished)

  26. 26.

    H.H. Wensink, H. Löwen, Phys. Rev. E 78, 031409 (2008)

    Article  ADS  Google Scholar 

  27. 27.

    C. Escudero, F. Maciá, J.J.L. Velazquez, Phys. Rev. E 82, 016113 (2010)

    Article  ADS  Google Scholar 

  28. 28.

    M. Doi, S.F. Edwards, The Theory of Polymer Dynamic (Clarendon Press, Oxford, 1986)

  29. 29.

    F. Peruani, L.G. Morelli, Phys. Rev. Lett. 99, 010602 (2007)

    Article  ADS  Google Scholar 

  30. 30.

    R. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York, 1965)

  31. 31.

    V. Dossetti, F.J. Sevilla, V.M. Kenkre, Phys. Rev. E 79, 051115 (2009)

    Article  ADS  Google Scholar 

  32. 32.

    J. Quintanilla, S. Torquato, R.M. Ziff, J. Phys. A: Math. Gen. 33, 399 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  33. 33.

    L. Schimansky-Geier, F. Schweitzer, W. Ebeling, H. Ulbricht, in Self-organization by Nonlinear Irreversible Processes, edited by W. Ebeling, H. Ulbricht (Springer, Berling, Heidelberg, New York, 1986), p. 67

  34. 34.

    F. Schweitzer, L. Schimansky-Geier, W. Ebeling, H. Ulbricht, Physica A 150, 261 (1988)

    Article  ADS  Google Scholar 

  35. 35.

    F. Schweitzer, L. Schimansky-Geier, W. Ebeling, H. Ulbricht, Physica A 153, 573 (1988)

    Article  ADS  Google Scholar 

  36. 36.

    S. Ramaswamy, R.A. Simha, J. Toner, Europhys. Lett. 62, 196 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to F. Peruani, L. Schimansky-Geier or M. Bär.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Peruani, F., Schimansky-Geier, L. & Bär, M. Cluster dynamics and cluster size distributions in systems of self-propelled particles. Eur. Phys. J. Spec. Top. 191, 173–185 (2010). https://doi.org/10.1140/epjst/e2010-01349-1

Download citation

Keywords

  • Liquid Crystal
  • European Physical Journal Special Topic
  • Noise Intensity
  • Cluster Dynamic
  • Cluster Size Distribution