Skip to main content

Wave propagation in heterogeneous bistable and excitable media

Abstract

Two examples for the propagation of traveling waves in spatially non-uniform media are studied: (a) bistable media with periodically varying excitation threshold and (b) bistable and excitable media with randomly distributed diffusion coefficient and excitation properties. In case (a), we have applied two different singular perturbation techniques, namely averaging (first and second order) and a projection method, to calculate the averaged front velocity as a function of the spatial period L of the heterogeneity for the Schlögl model. Our analysis reveals a velocity overshoot for small values of L and propagation failure for large values of L. The analytical predictions are in good agreement with results of direct numerical simulations. For case (b), effective medium properties are derived by a self-consistent homogenization approach. In particular, the resulting velocities found by direct numerical simulations of the random medium are reproduced well as long as the diffusion lengths in the medium are larger than the heterogeneity scale. Simulations reveal also that complex irregular dynamics can be triggered by heterogeneities.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R. Kapral, K. Showalter (eds.), Chemical Waves and Patterns (Kluwer, Dordrecht, 1994)

  2. 2.

    J.P. Keener, J. Sneyd, Mathematical Physiology (Springer, New York, 1998)

  3. 3.

    O. Steinbock, P. Kettunen, K. Showalter, Science 269, 187 (1995)

    Article  Google Scholar 

  4. 4.

    N. Manz, V.A. Davydov, V.S. Zykov, S.C. Müller, Phys. Rev. E 66, 036207 (2002)

    Article  ADS  Google Scholar 

  5. 5.

    I. Sendiña-Nadal, A.P. Muñuzuri, D. Vives, V. Pérez-Muñuzuri, J. Casademunt, L. Ramírez-Piscina, J.M. Sancho, F. Sagués, Phys. Rev. Lett. 80, 5437 (1998)

    Article  ADS  Google Scholar 

  6. 6.

    V. Beato, I. Sendiña-Nadal, I. Gerdes, H. Engel, Phil. Trans. R. Soc. A 366, 381 (2008)

    MATH  Article  ADS  Google Scholar 

  7. 7.

    M. Bär, A.K. Bangia, I.G. Kevrekidis, G. Haas, H.-H. Rotermund, G. Ertl, J. Phys. Chem. 100, 19106 (1996)

    Article  Google Scholar 

  8. 8.

    I. Schebesch, H. Engel, Phys. Rev. E 57, 3905 (1998)

    Article  ADS  Google Scholar 

  9. 9.

    J.P. Keener, Physica D, 136, 1 (2000)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  10. 10.

    J.P. Keener, SIAM J. Appl. Math. 61, 317 (2000)

    MATH  Article  MathSciNet  Google Scholar 

  11. 11.

    A. Engel and W. Ebeling, Phys. Lett. A, 112, 20 (1987)

    Article  ADS  Google Scholar 

  12. 12.

    A.V. Panfilov, Phys. Rev. Lett. 88, 118101 (2002)

    Article  ADS  Google Scholar 

  13. 13.

    K.H.W.J. Ten Tusscher, A.V. Panfilov, Phys. Rev. E 68, 062902 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  14. 14.

    N.N. Bogoliubov, Y.A. Mitropolski, Asymptotic methods of non-linear Mechanics (Gordon and Breach, New York, 1961)

  15. 15.

    M. Bode, Physica D 106, 270 (1997)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  16. 16.

    A. Engel, Phys. Lett. A 113, 139 (1985)

    Article  ADS  Google Scholar 

  17. 17.

    L. Schimansky-Geier, A.S. Mikhailov, W. Ebeling, Ann. Phys. 40, 277 (1983)

    Article  Google Scholar 

  18. 18.

    A.S. Mikhailov, L. Schimansky-Geier, W. Ebeling, Phys. Lett. A 40, 277 (1983)

    MathSciNet  Google Scholar 

  19. 19.

    J. García-Ojalvo, F. Sagués, J.M. Sancho, L. Schimansky-Geier, Phys. Rev. E 65, 011105 (2001)

    Article  ADS  Google Scholar 

  20. 20.

    S. Alonso, F. Sagués, J.M. Sancho, Phys. Rev. E 65, 066107 (2002)

    Article  ADS  Google Scholar 

  21. 21.

    B. Lindner, J. García-Ojalvo, A. Neiman, L. Schimansky-Geier, Phys. Rep. 392, 321 (2004)

    Article  ADS  Google Scholar 

  22. 22.

    F. Schlögl, Z. Phys. A-Hadron. Nucl. 253, 147 (1972)

    Google Scholar 

  23. 23.

    S. Alonso, R. Kapral, M. Bär, Phys. Rev. Lett. 102, 238302 (2009)

    Article  ADS  Google Scholar 

  24. 24.

    S. Alonso, M. Bär, R. Kapral, J. Chem. Phys. 131, 214102 (2009)

    Article  ADS  Google Scholar 

  25. 25.

    D. Bedeaux, R. Kapral, J. Chem. Phys. 79, 1783 (1983)

    Article  ADS  Google Scholar 

  26. 26.

    J. Löber, M. Bär, H. Engel (2010) (in preparation)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Engel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alonso, S., Löber, J., Bär, M. et al. Wave propagation in heterogeneous bistable and excitable media. Eur. Phys. J. Spec. Top. 187, 31–40 (2010). https://doi.org/10.1140/epjst/e2010-01268-1

Download citation

Keywords

  • Direct Numerical Simulation
  • European Physical Journal Special Topic
  • Excitable Medium
  • Medium Theory
  • Front Velocity