The European Physical Journal Special Topics

, Volume 180, Issue 1, pp 117–134 | Cite as

Transport properties of copper phthalocyanine based organic electronic devices

Regular Article

Abstract.

Ambipolar charge carrier transport in Copper phthalocyanine (CuPc) is studied experimentally in field-effect transistors and metal-insulator-semiconductor diodes at various temperatures. The electronic structure and the transport properties of CuPc attached to leads are calculated using density functional theory and scattering theory at the non-equilibrium Green’s function level. We discuss, in particular, the electronic structure of CuPc molecules attached to gold chains in different geometries to mimic the different experimental setups. The combined experimental and theoretical analysis explains the dependence of the mobility and the transmission coefficient on the charge carrier type (electrons or holes) and on the contact geometry. We demonstrate the correspondence between our experimental results on thick films and our theoretical studies of single molecule contacts. Preliminary results for fluorinated CuPc are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Damle, A.W. Ghosh, S. Datta, Chem. Phys. 281, 171 (2002)CrossRefADSGoogle Scholar
  2. 2.
    M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002)CrossRefADSGoogle Scholar
  3. 3.
    A.R. Rocha, V.M. Garcia-Suarez, S.W. Bailey, C.J. Lambert, J. Ferrer, S. Sanvito, Nature Mater. 4, 335 (2005)CrossRefADSGoogle Scholar
  4. 4.
    A.R. Rocha, V.M. Garcia-Suarez, S.W. Bailey, C.J. Lambert, J. Ferrer, S. Sanvito, Phys. Rev. B 73, 085414 (2006)CrossRefADSGoogle Scholar
  5. 5.
    I. Rungger, O. Mryasov, S. Sanvito, Phys. Rev. B 79, 094414 (2009)CrossRefADSGoogle Scholar
  6. 6.
    M.M. Fadlallah, C. Schuster, U. Schwingenschlögl, I. Rungger, U. Eckern, Phys. Rev. B 80, 235332 (2009)CrossRefADSGoogle Scholar
  7. 7.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    J.-L. Brédas, D. Beljonne, V. Coropceanu, J. Cornil, Chem. Rev. 104, 4971 (2004)CrossRefGoogle Scholar
  9. 9.
    Y. Meir, N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992)CrossRefADSGoogle Scholar
  10. 10.
    G. Paasch, S. Scheinert, Syn. Metals 122, 145 (2001)CrossRefGoogle Scholar
  11. 11.
    P. Lugli, C. Erlen, A. Pecchia, F. Brunetti, L. Latessa, A. Bolognesi, G. Csaba, G. Scarpa, A. di Carlo, Appl. Phys. A 87, 593 (2007)CrossRefADSGoogle Scholar
  12. 12.
    Y. Shirota, H. Kageyama, Chem. Rev. 107, 953 (2007)CrossRefGoogle Scholar
  13. 13.
    S.M. Tadayyon, H.M. Grandin, K. Griffiths, P.R. Norton, H. Aziz, Z.D. Popovic, Org. Electron. 5, 157 (2004)CrossRefGoogle Scholar
  14. 14.
    M. Minagawa, K. Shinbo, K. Usuda, T. Takahashi, M. Iwasaki, K. Kato, F. Kaneko, Jpn. J. Appl. Phys. 45, 8890 (2006)CrossRefADSGoogle Scholar
  15. 15.
    M.F. Craciun, S. Rogge, A.F. Morpurgo, J. Am. Chem. Soc. 127, 12210 (2005)CrossRefGoogle Scholar
  16. 16.
    M.F. Craciun, S. Rogge, M.J.L. den Boer, S. Margadonna, K. Prassides, Y. Iwasa, A.F. Morpurgo, Adv. Mater. 18, 320 (2006)CrossRefGoogle Scholar
  17. 17.
    G. Giovannetti, G. Brocks, J. van den Brink, Phys. Rev. B. 77, 035133 (2008)CrossRefADSGoogle Scholar
  18. 18.
    A. Hoshino, Y. Takenaka, H. Miyaji, Acta Crystallogr. B 59, 393 (2003)CrossRefGoogle Scholar
  19. 19.
    S. Luan, G.W. Neudeck, J. Appl. Phys. 72, 766 (1992)CrossRefADSGoogle Scholar
  20. 20.
    P. Stallinga, A.R.V. Benvenho, E.C.P. Smits, S.G.J. Mathijssen, M. Cölle, H.L. Gomes, D.M. de Leeuw, Org. Electron. 9, 735 (2008)CrossRefGoogle Scholar
  21. 21.
    J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002)CrossRefADSGoogle Scholar
  22. 22.
    L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)CrossRefADSGoogle Scholar
  23. 23.
    B. Bialek, I.G. Kim, J.I. Lee, Thin Solid Films 436, 107 (2003)CrossRefADSGoogle Scholar
  24. 24.
    N. Marom, O. Hod, G.E. Scuseria, L. Kronik, J. Chem. Phys. 128, 164107 (2008)CrossRefADSGoogle Scholar
  25. 25.
    J. Paier, M. Marsman, G. Kresse, J. Chem. Phys. 127, 024103 (2007)CrossRefADSGoogle Scholar
  26. 26.
    V. Yu. Aristov, O.V. Molodtsova, V.V. Maslyuk, D.V. Vyalikh, V.M. Zhilin, Yu. A. Ossipyan, T. Bredow, I. Mertig, M. Knupfer, Appl. Surf. Sci. 254, 20 (2007)CrossRefADSGoogle Scholar
  27. 27.
    O.V. Molodtsova, M. Knupfer, V.V. Maslyuk, D.V. Vyalikh, V.M. Zhilin, Y.A. Ossipyan, T. Bredow, I. Mertig, V. Yu. Aristov, J. Chem. Phys. 129, 154705 (2008)CrossRefADSGoogle Scholar
  28. 28.
    V. Yu. Aristov, O.V. Molodtsova, V.V. Maslyuk, D.V. Vyalikh, V.M. Zhilin, Yu. A. Ossipyan, T. Bredow, I. Mertig, M. Knupfer, J. Chem. Phys. 128, 34703 (2008)CrossRefGoogle Scholar
  29. 29.
    T. Fritz, M. Hara, W. Knoll, H. Sasabe, Mol. Cryst. Liq. Cryst. 253, 269 (1994)CrossRefGoogle Scholar
  30. 30.
    F. Song, H. Huang, W. Dou. H. Zhang, Y. Hu, H. Qian, H. Li, P. He, S. Bao, Q. Chen, W. Zhou, J. Phys.: Condens. Matter 19, 136002 (2007)CrossRefADSGoogle Scholar
  31. 31.
    C.J. Brown, J. Chem. Soc. (A), 2488 (1968)Google Scholar
  32. 32.
    S.F. Alvarado, L. Rossi, P. Müller, W. Rieß, Synthetic Metals 122, 73 (2001)CrossRefGoogle Scholar
  33. 33.
    S. Krause, M.B. Casu, A. Schöll, E. Umbach, N. J. Phys. 10, 085001 (2008)CrossRefGoogle Scholar
  34. 34.
    J. Berkovitz, J. Chem. Phys. 70, 2819 (1979)CrossRefADSGoogle Scholar
  35. 35.
    L.L. Chua, J. Zaumseil, J.F. Chang, E.C.W. Ou, P.K.H. Ho, H. Sirringhaus, R.H. Friend, Nature 434, 194 (2005)CrossRefADSGoogle Scholar
  36. 36.
    A. Opitz, M. Kraus, M. Bronner, J. Wagner, W. Brütting, New J. Phys. 10, 065006 (2008)CrossRefADSGoogle Scholar
  37. 37.
    Y. Abe, T. Hasegawa, Y. Takahashi, T. Yamada, Y. Tokura, Appl. Phys. Lett. 87, 153506 (2005)CrossRefADSGoogle Scholar
  38. 38.
    G.V. Nazin, Qiu, W. Ho, Science 302, 77 (2003)CrossRefADSGoogle Scholar
  39. 39.
    T. Wunderlich, DFT calculations for the transport through metallic nanocontacts [in German], diploma thesis, Augsburg, July 2009 (unpublished)Google Scholar
  40. 40.
    L. Yan, N.J. Watkins, S. Zorba, Y. Gao, C. W. Tang, Appl. Phys. Lett. 79, 4148 (2001)CrossRefADSGoogle Scholar
  41. 41.
    M. Scharnberg, J. Hu, J. Kanzow, K. Rätzke, R. Adelung, F. Faupel, C. Pannemann, U. Hilleringmann, S. Meyer, J. Pflaum, Appl. Phys. Lett. 86, 024104 (2005)CrossRefADSGoogle Scholar
  42. 42.
    G. Parthasarathy, P.E. Burrows, V. Khalfin, V.G. Kozlov, S.R. Forrest, Appl. Phys. Lett. 72, 2138 (1998)CrossRefADSGoogle Scholar
  43. 43.
    M.M. Fadlallah, C. Schuster, U. Eckern, U. Schwingenschlögl, EPL 89, 47003 (2010)CrossRefADSGoogle Scholar
  44. 44.
    R. Coehoorn, W.F. Pasveer, P.A. Bobbert, M.A.J. Michels, Phys. Rev. B 72, 155206 (2005)CrossRefADSGoogle Scholar
  45. 45.
    W.F. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P.A. Bobbert, P.W.M. Blom, D.M. de Leeuw, M.A.J. Michels, Phys. Rev. Lett. 94, 206601 (2005)CrossRefADSGoogle Scholar
  46. 46.
    M. Bouhassoune, S.L.M. van Mensfoort, P.A. Bobbert, R. Coehoorn, Org. Electron. 10, 437 (2009)CrossRefGoogle Scholar
  47. 47.
    S. Grecu, M. Roggenbuck, A. Opitz, W. Brütting, Org. Electron. 7, 276 (2006)CrossRefGoogle Scholar
  48. 48.
    R. Bourguiga, M. Mahdouani, S. Mansouri, G. Horowitz, Eur. Phys. J. Appl. Phys. 39, 7 (2007)CrossRefADSGoogle Scholar
  49. 49.
    K. Xiao, Y. Liu, G. Yu, D. Zhu, Appl. Phys. A 77, 367 (2003)CrossRefADSGoogle Scholar
  50. 50.
    M. Büttiker, Y. Imry, R. Landauer, S. Pinhas, Phys. Rev. B 31, 6207 (1985)CrossRefADSGoogle Scholar
  51. 51.
    Z. Bao, A.J. Lovinger, J. Brown, J. Am. Chem. Soc. 120, 207 (1998)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2010

Authors and Affiliations

  1. 1.Institut für PhysikUniversität AugsburgAugsburgGermany

Personalised recommendations