The European Physical Journal Special Topics

, Volume 174, Issue 1, pp 157–179 | Cite as

Complex networks in climate dynamics

Comparing linear and nonlinear network construction methods


Complex network theory provides a powerful framework to statistically investigate the topology of local and non-local statistical interrelationships, i.e. teleconnections, in the climate system. Climate networks constructed from the same global climatological data set using the linear Pearson correlation coefficient or the nonlinear mutual information as a measure of dynamical similarity between regions, are compared systematically on local, mesoscopic and global topological scales. A high degree of similarity is observed on the local and mesoscopic topological scales for surface air temperature fields taken from AOGCM and reanalysis data sets. We find larger differences on the global scale, particularly in the betweenness centrality field. The global scale view on climate networks obtained using mutual information offers promising new perspectives for detecting network structures based on nonlinear physical processes in the climate system.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)Google Scholar
  2. M.E.J. Newman, SIAM Rev. 45, 167 (2003)Google Scholar
  3. R. Albert, A.L. Barabási, Rev. Mod. Phys. 74, 47 (2002)Google Scholar
  4. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.U. Hwang, Phys. Rep. 424, 175 (2006)Google Scholar
  5. A. Arenas, A. Dìaz-Guilera, J. Kurths, Y. Moreno, C.S. Zhou, Phys. Rep. 469, 93 (2008)Google Scholar
  6. A. Tsonis, P. Roebber, Physica A 333, 497 (2004)Google Scholar
  7. A.A. Tsonis, K.L. Swanson, P. Roebber, Bull. Am. Meteorol. Soc. 87, 585 (2006)Google Scholar
  8. A.A. Tsonis, K.L. Swanson, G. Wang, J. Clim. 21, 2990 (2008)Google Scholar
  9. A.A. Tsonis, K.L. Swanson, Phys. Rev. Lett. 100, 228502 (2008)Google Scholar
  10. K. Yamasaki, A. Gozolchiani, S. Havlin, Phys. Rev. Lett. 100, 228501 (2008)Google Scholar
  11. A. Gozolchiani, K. Yamasaki, O. Gazit, S. Havlin, Europhys. Lett. 83, 28005 (2008)Google Scholar
  12. R. Donner, T. Sakamoto, N. Tanizuka, Nonlinear Time Series Analysis in the Geosciences: Applications in Climatology, Geodynamics and Solar-Terrestrial Physics, edited by R. Donner, S. Barbosa (Springer, 2008), pp. 125–154Google Scholar
  13. J.F. Donges, Y. Zou, N. Marwan, J. Kurths, The backbone of the climate network, Europhys. Lett. (2009) (submitted)Google Scholar
  14. J.M. Wallace, D.S. Gutzler, Mon. Wea. Rev. 109, 784 (1981)Google Scholar
  15. H. Kantz, T. Schreiber, Nonlinear Time Series Analysis, 2nd edn. (Cambridge University Press, 2004)Google Scholar
  16. R. Kistler, E. Kalnay, W. Collins, S. Saha, G. White, J. Woollen, M. Chelliah, W. Ebisuzaki, M. Kanamitsu, V. Kousky, et al., Bull. Am. Meteorol. Soc. 82, 247 (2001)Google Scholar
  17. G. Meehl, C. Covey, T. Delworth, M. Latif, B. McAvaney, J. Mitchell, R. Stouffer, K. Taylor, Bull. Am. Meteorol. Soc. 88, 1383 (2007)Google Scholar
  18. L. Freeman, Soc. Networks 1, 215 (1979)Google Scholar
  19. G. Zamora-López, Linking Structure and Function of Complex Cortical Networks, Ph.D. thesis (University of Potsdam, 2008)Google Scholar
  20. M. Sexton, J.F. Donges, N. Marwan, The Spatial Resolution Dependence of Complex Climate Networks, Internal report (2009)Google Scholar
  21. R.W. Hamming, Bell Syst. Tech. J. 26, 147 (1950)Google Scholar
  22. P. Erdős, A. Rényi, Publ. Math. Debrecen 6, 290 (1959)Google Scholar
  23. A.S. Pikovsky, M.G. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, 2001)Google Scholar
  24. B. Blasius, R. Tönjes, Phys. Rev. Lett. 95, 84101 (2005)Google Scholar
  25. R. Tönjes, Pattern Formation through Synchronization in Systems of Nonidentical Autonomous Oscillators, Ph.D. thesis (University of Potsdam, 2007)Google Scholar
  26. S. Boccaletti, J. Kurths, G. Osipov, D. Valladares, C.S. Zhou, Phys. Rep. 366, 1 (2002)Google Scholar
  27. M.G. Rosenblum, A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 76, 1804 (1996)Google Scholar
  28. C.S. Zhou, L. Zemanová, G. Zamora-López, C.C. Hilgetag, J. Kurths, New J. Phys. 9, 178 (2007)Google Scholar
  29. G. Schmidt, G. Zamora-López, J. Kurths, Int. J. Bif. Chaos (2008) (in press)Google Scholar
  30. P.J. Brockwell, R.A. Davies, Introduction to Time Series and Forecasting, 2nd edn. (Springer, 2002)Google Scholar
  31. D. Maraun, J. Kurths, Geophys. Res. Lett. 32, 15709 (2005)Google Scholar
  32. K.W. Church, P. Hanks, Comp. Linguist. 16, 22 (1990)Google Scholar
  33. U. Schwarz, A.O. Benz, J. Kurths, A. Witt, Astron. Astrophys. 277, 215 (1993)Google Scholar
  34. R. Hegger, H. Kantz, T. Schreiber, Chaos 9, 413 (1999)Google Scholar
  35. A. Papana, D. Kugiumtzis, eprint [arXiv: 0809.2149] (2008)Google Scholar
  36. A. Kraskov, H. Stögbauer, P. Grassberger, Phys. Rev. E 69, 066138 (2004)Google Scholar
  37. M. Thiel, M. Romano, J. Kurths, M. Rolfs, R. Kliegl, Europhys. Lett. 75, 535 (2006)Google Scholar
  38. M.I. Rabinovich, P. Varona, A.I. Selverston, H.D.I. Abarbanel, Rev. Mod. Phys. 78, 1213 (2006)Google Scholar
  39. C.S. Zhou, L. Zemanová, G. Zamora-López, C.C. Hilgetag, J. Kurths, Phys. Rev. Lett. 97, 238103 (2006)Google Scholar
  40. P. beim Graben, C.S. Zhou, M. Thiel, J. Kurths (eds.), Lectures in Supercomputational Neuroscience: Dynamics in Complex Brain Networks, 1st edn. (Springer, 2008)Google Scholar
  41. G.K. Vallis, Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-scale Circulation (Cambridge University Press, 2006)Google Scholar
  42. K.I. Goh, E. Oh, H. Jeong, B.L. Kahng, D. Kim, Proc. Natl. Acad. Sci. USA 99, 12583 (2002)Google Scholar
  43. R. Albert, I. Albert, G.L. Nakarado, Phys. Rev. E 69, 025103 (2004)Google Scholar
  44. W. von Bloh, M.C. Romano, M. Thiel, Nonlinear Proc. Geoph. 12, 471 (2005)Google Scholar
  45. S. Milgram, Psychol. Today 2, 60 (1967)Google Scholar
  46. A.A. Tsonis, K.L. Swanson, G. Wang, Physica A 387, 5287 (2008)Google Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  1. 1.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  2. 2.Institute of Physics, University of PotsdamPotsdam-GolmGermany
  3. 3.Department of PhysicsHumboldt UniversityBerlinGermany

Personalised recommendations