Skip to main content
Log in

Thermalization of incoherent nonlinear waves

From incoherent solitons to a thermodynamic description of statistical nonlinear optics

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The subject of incoherent nonlinear optics received a renewed interest since the first experimental demonstration of incoherent solitons in slowly responding photorefractive crystals. Several theories have been successfully developed to provide a detailed description of the dynamics of incoherent optical solitons. However, such theories leave unanswered the question regarding the long term evolution of a partially incoherent optical field propagating in a nonlinear medium. In analogy with kinetic gas theory, an incoherent optical field evolves, owing to nonlinearity, towards a thermodynamic equilibrium state. Wave turbulence theory describes the essential properties of this irreversible process of thermal wave relaxation to equilibrium. Such irreversible behavior is expressed by a H-theorem of entropy growth, whose origin is analogous to the celebrated Boltzmann’s H-theorem. In this review we analyze the thermalization of incoherent nonlinear optical fields in various circumstances. We shall begin with the simplest case where the optical field is ruled by the scalar NonLinear Schrödinger (NLS) equation. In this case wave thermalization is characterized by a condensation process of the optical field, whose thermodynamic properties are analogous to those of Bose-Einstein condensation, despite the fact that the considered optical wave is completely classical. We then study the thermalization of an ensemble of incoherent fields governed by the vector NLS equation. The influence of the relative intensity of the coupled fields reveals the existence of a process of coherence absorption: The condensation of the optical field is induced by the presence of another small-amplitude field, which absorbs almost all the noise of the system. Such a coherence absorption effect is shown to also occur in thermal quantum Bose gases. The influence of convection (group-velocity difference) on the thermalization process is also analyzed. A set of incoherent wave-packets is shown to irreversibly evolve towards an equilibrium state in which they propagate with an identical group-velocity. This velocity-locking effect has a thermodynamic origin and thus appears as a generic property of a system of incoherent nonlinear waves. The influence of a coherent coupling on wave thermalization leads to an unexpected process of spontaneous polarization of unpolarized incoherent light, without loss of energy. Finally, the influence of higher-order dispersion effects on optical thermalization is responsible for a dramatic spectral broadening phenomenon known as supercontinuum generation. This reveals that supercontinuum generation may be regarded as a consequence of the natural thermalization of an optical field to equilibrium. We finally show that the thermodynamic properties of incoherent nonlinear waves may be analyzed by means of the fundamental T dS equation of thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Mitchell, Z. Chen, M.F. Shih, M. Segev, Phys. Rev. Lett. 77, 490 (1996)

    Google Scholar 

  • M. Mitchell, M. Segev, Nature (London) 387, 880 (1997)

    Google Scholar 

  • Y.S. Kivshar, G.P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, 2003)

  • M. Segev, D.N. Christodoulides, Press Spatial Solitons, edited by S. Trillo, W. Torruellas (Springer, Berlin, 2001)

  • M. Soljacic, M. Segev, T. Coskun, D.N. Christodoulides, A. Vishwanath, Phys. Rev. Lett. 84, 467 (2000)

    Google Scholar 

  • D. Kip, M. Soljacic, M. Segev, E. Eugenieva, D.N. Christodoulides, Science 290, 495 (2000)

    Google Scholar 

  • C. Anastassiou, M. Soljacic, M. Segev, E.D. Eugenieva, D.N. Christodoulides, D. Kip, Z.H. Musslimani, J.P. Torres, Phys. Rev. Lett. 85, 4888 (2000)

    Google Scholar 

  • S.M. Sears, M. Soljacic, D.N. Christodoulides, M. Segev, Phys. Rev. E 65, 036620 (2002)

    Google Scholar 

  • D.N. Christodoulides, T.H. Coskun, M. Mitchell, Z. Chen, M. Segev, Phys. Rev. Lett. 80, 5113 (1998)

    Google Scholar 

  • Z. Chen, M. Mitchell, M. Segev, T.H. Coskun, D.N. Christodoulides, Science 280, 889 (1998)

    Google Scholar 

  • H. Buljan, M. Soljacic, T. Carmon, M. Segev, Phys. Rev. E 68, 016616 (2003)

    Google Scholar 

  • H. Buljan, O. Cohen, J.W. Fleischer, T. Schwartz, M. Segev, Z.H. Musslimani, N.K. Efremidis, D.N. Christodoulides, Phys. Rev. Lett. 92, 223901 (2004)

    Google Scholar 

  • O. Cohen, G. Bartal, H. Buljan, T. Carmon, J.W. Fleischer, M. Segev, D.N. Christodoulides, Nature (London) 433, 500 (2005)

    Google Scholar 

  • D.V. Dylov, J.W. Fleischer, Phys. Rev. Lett. 100, 103903 (2008)

    Google Scholar 

  • A. Picozzi, M. Haelterman, Phys. Rev. Lett. 86, 2010 (2001)

  • A. Picozzi, C. Montes, M. Haelterman, Phys. Rev. E 66, 056605 (2002)

    Google Scholar 

  • A. Picozzi, M. Haelterman, S. Pitois, G. Millot, Phys. Rev. Lett. 92, 143906 (2004)

    Google Scholar 

  • A. Picozzi, S. Pitois, G. Millot, Phys. Rev. Lett. 101, 093901 (2008)

    Google Scholar 

  • M. Wu, P. Krivosik, B.A. Kalinikos, C.E. Patton, Phys. Rev. Lett. 96, 227202 (2006)

    Google Scholar 

  • O. Cohen, H. Buljan, T. Schwartz, J.W. Fleischer, M. Segev, Phys. Rev. E 73, 015601 (2006)

    Google Scholar 

  • C. Rotschild, T. Schwartz, O. Cohen, M. Segev, Nature Photon. 2, 371 (2008)

  • A. Picozzi, P. Aschieri, Phys. Rev. E 72, 046606 (2005)

    Google Scholar 

  • C. Montes, A. Picozzi, K. Gallo, Opt. Commun. 237, 437 (2004)

    Google Scholar 

  • A. Picozzi, M. Haelterman, Phys. Rev. Lett. 92, 103901 (2004)

    Google Scholar 

  • A. Sauter, S. Pitois, G. Millot, A. Picozzi, Opt. Lett. 30, 2143 (2005)

    Google Scholar 

  • C. Connaughton, C. Josserand, A. Picozzi, Y. Pomeau, S. Rica, Phys. Rev. Lett. 95, 263901 (2005)

    Google Scholar 

  • A. Picozzi, Phys. Rev. Lett. 96, 013905 (2006)

    Google Scholar 

  • S. Pitois, S. Lagrange, H.R. Jauslin, A. Picozzi, Phys. Rev. Lett. 97, 033902 (2006)

    Google Scholar 

  • S. Lagrange, H.R. Jauslin, A. Picozzi, Europhys. Lett. 79, 64001 (2007)

    Google Scholar 

  • A. Picozzi, Opt. Exp. 15, 9063 (2007)

    Google Scholar 

  • A. Picozzi, S. Rica, Europhys. Lett. 84, 34004 (2008)

    Google Scholar 

  • A. Picozzi, Opt. Exp. 16, 17171 (2008)

    Google Scholar 

  • B. Barviau, B. Kibler, S. Coen, A. Picozzi, Opt. Lett. 33, 2833 (2008)

    Google Scholar 

  • B. Barviau, B. Kibler, A. Picozzi, G. Millot, A. Kudlinski, A. Mussot, Opt. Express 17, 7392 (2009)

  • G. During, A. Picozzi, S. Rica, Physica D (2009), doi:10.1016/j.physd.2009.04.014

  • G.A. Pasmanik, Sov. Phys. JETP 39, 234 (1974)

    Google Scholar 

  • M. Mitchell, M. Segev, T. Coskun, D.N. Christodoulides, Phys. Rev. Lett. 79, 4990 (1997)

    Google Scholar 

  • D.N. Christodoulides, T.H. Coskun, M. Mitchell, M. Segev, Phys. Rev. Lett. 78, 646 (1997)

    Google Scholar 

  • B. Hall, M. Lisak, D. Anderson, R. Fedele, V.E. Semenov, Phys. Rev. E 65, 035602 (2002)

    Google Scholar 

  • L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, New York, 1995)

  • D.N. Christodoulides, E.D. Eugenieva, T.H. Coskun, M. Segev, M. Mitchell, Phys. Rev. E 63, 035601 (2001)

    Google Scholar 

  • M. Lisak, L. Helczynski, D. Anderson, Opt. Commun. 220, 321 (2003)

    Google Scholar 

  • A.W. Snyder, D.J. Mitchell, Phys. Rev. Lett. 80, 1422 (1998)

    Google Scholar 

  • A. Hasegawa, Phys. Fluids 18, 77 (1975)

  • A. Hasegawa, Phys. Fluids 20, 2155 (1977)

  • V.E. Zakharov, V.S.L’vov, G. Falkovich, Kolmogorov Spectra of Turbulence I (Springer, Berlin, 1992)

  • V.N. Tsytovich, Nonlinear Effects in Plasma (Plenum, New York, 1970)

  • A. Hasegawa, Plasma Instabilities and Nonlinear Effects (Springer-Verlag, New York, 1975)

  • P.A. Robinson, Rev. Mod. Phys. 69, 507 (1997)

    Google Scholar 

  • K. Hasselmann, J. Fluid Mech. 12, 481 (1962)

    Google Scholar 

  • K. Hasselmann, J. Fluid Mech. 15, 273 (1963)

    Google Scholar 

  • S. Dyachenko, A.C. Newell, A. Pushkarev, V.E. Zakharov, Physica D 57, 96 (1992)

    Google Scholar 

  • V. Zakharov, F. Dias, A. Pushkarev, Phys. Rep. 398, 1 (2004)

    Google Scholar 

  • D.J. Benney, P.G. Saffman, Proc. Roy. Soc. London A 289, 301 (1966)

    Google Scholar 

  • A.C. Newell, Rev. Geophys. 6, 1 (1968)

    Google Scholar 

  • D.J. Benney, A.C. Newell, Stud. Appl. Math. 48, 29 (1969)

    Google Scholar 

  • A.C. Newell, S. Nazarenko and L. Biven, Physica D 152, 520 (2001)

  • Y.V. Lvov, S. Nazarenko, Phys. Rev. E 69, 066608 (2004) ; Y. Choi, Y.V. Lvov, S. Nazarenko, Phys. Lett. A 332, 230 (2004) ; Y. Choi, Y.V. Lvov, S. Nazarenko, Phys. Rev. E 201, 121 (2005)

  • K. Huang, Statistical Mechanics (Wiley, 1963)

  • R.Z. Sagdeev, D.A. Usikov, G.M. Zaslavsky, Nonlinear Physics (Harwood Academic Publ., Chur, Switzerland, 1988)

  • K. Rasmussen, et al., Phys. Rev. Lett. 84, 3740 (2000) ; M. Johansson, K.O. Rasmussen, Phys. Rev. E 70, 066610 (2004)

    Google Scholar 

  • R. Jordan, B. Turkington, C.L. Zirbel, Physica D 137, 353 (2000) ; R. Jordan, C. Josserand, Phys. Rev. E 61, 1527 (2000) ; A. Eisner, B. Turkington, Physica D 213, 85 (2006)

  • B. Rumpf, A.C. Newell, Phys. Rev. Lett. 87, 054102 (2001) ; Physica D 184, 162 (2003) ; Phys. Rev. E 69, 026306 (2004) ; B. Rumpf, Phys. Rev. E 69, 016618 (2004)

  • A. Fratalocchi, C. Conti, G. Ruocco, S. Trillo, Phys. Rev. Lett. 101, 044101 (2008)

    Google Scholar 

  • L. Angelani, C. Conti, G. Ruocco, F. Zamponi, Phys. Rev. Lett. 96, 065702 (2006) ; L. Angelani, C. Conti, G. Ruocco, F. Zamponi Phys. Rev. B 74, 104207 (2006)

  • Y. Pomeau, Physica D 61, 227 (1992)

  • V.E. Zakharov, S.V. Nazarenko, Physica D 201, 203 (2005)

    Google Scholar 

  • L. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Oxford Science Publications, 2003)

  • M.J. Davis, S.A. Morgan, K. Burnett, Phys. Rev. Lett. 87, 160402 (2001) ; Phys. Rev. A 66, 053618 (2002)

    Google Scholar 

  • B.V. Svistunov, J. Mosc. Phys. Soc. 1, 373 (1991) ; Yu. Kagan, B.V. Svistunov, G.V. Shlyapnikov, Zh. Eksp. Teor. Fiz 101, 528 (1992) ; Sov. Phys. JETP 75, 387 (1992) ; Yu. Kagan, B.V. Svistunov, Phys. Rev. Lett. 79, 3331 (1997) ; M.J. Davis, R.J. Ballagh, K. Burnett, J. Phys. B 33, 3847 (2001)

  • B.K. Som, et al., Phys. Lett. A 72, 111 (1979) ; M.R. Gupta, et al., J. Plasma Phys. 25, 499 (1981) ; C.J. McKinstrie, D.A. Russell, Phys. Rev. Lett. 61, 2929 (1988)

  • J.L. Hammack, et al., J. Fluid Mech. 532, 1 (2005) ; M. Onorato, et al., Phys. Rev. Lett. 96, 014503 (2006)

  • H. Salman, N. Berloff [arXiv.org:cond-mat/0803.0884]

  • A. Picozzi, M. Haelterman, Phys. Rev. Lett. 88, 083901 (2002)

    Google Scholar 

  • O. Jedrkiewicz, A. Picozzi, M. Clerici, D. Faccio, P. Di Trapani, Phys. Rev. Lett. 97, 243903 (2006)

    Google Scholar 

  • O. Jedrkiewicz, M. Clerici, A. Picozzi, D. Faccio, P. Di Trapani, Phys. Rev. A 76, 033823 (2007)

    Google Scholar 

  • A. Picozzi, M. Haelterman, Phys. Rev. E 63, 056611 (2001)

    Google Scholar 

  • B. Crosignani, B. Daino, P. Di Porto, J. Opt. Soc. Am. B 3, 1120 (1986)

    Google Scholar 

  • V.E. Chernov, B.A. Zon, J. Opt. Soc. Am. B 10, 210 (1993)

    Google Scholar 

  • Yu.P. Svirko, N.I. Zheludev, Polarization of Light in Nonlinear Optics (Wiley & Sons, 2000)

  • Yu.P. Svirko, N.I. Zheludev, Phys. Rev. A 50, 709 (1994)

    Google Scholar 

  • A. Picozzi, Opt. Lett. 29, 1653 (2004)

    Google Scholar 

  • H. Prakash, D.K. Singh, J. Phys. B: At. Mol. Opt. Phys. 41, 045401 (2008)

  • J.E. Heebner, R. Bennink, R.W. Boyd, R. Fisher, Opt. Lett. 25, 257 (2000)

    Google Scholar 

  • S. Pitois, A. Picozzi, G. Millot, H.R. Jauslin, M. Haelterman, Europhys. Lett. 70, 88 (2005)

    Google Scholar 

  • S. Pitois, J. Fatome, G. Millot, Opt. Exp. 16, 6646 (2008)

    Google Scholar 

  • A.C. Newell, J.V. Moloney, Nonlinear Optics (Addison-Wesley Publ. Comp., 1992)

  • V.E. Zakharov, A.N. Pushkarev, V.F. Shvetz, V.V. Yan’kov, Pis’ma v Zh. Eksp. Teor. Fiz. 48, 79 (1988) ; JETP Lett. 48, 83 (1988)

    Google Scholar 

  • R.W. Boyd, Nonlinear Optics, 3rd edn. (Academic Press, 2008)

  • D.C. Hutchings, J.S. Aitchison, J.M. Arnold, J. Opt. Soc. Am. B 14, 869 (1997)

    Google Scholar 

  • L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, New York, 1995)

  • J.W. Goodman, Statistical Optics (Wiley-Interscience Publ., New York, 1985)

  • E.L. O’Neill, Introduction to Statistical Optics (Dover Publ., New York, 1963)

  • E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge Univ. Press, 2007)

  • P. Ohberg, S. Stenholm, Phys. Rev. A 59, 3890 (1999)

    Google Scholar 

  • J.M. Dudley, G. Genty, S. Coen, Rev. Mod. Phys. 78, 1135 (2006)

    Google Scholar 

  • G. Genty, S. Coen, J.M. Dudley, J. Opt. Soc. Am. B 24, 1771 (2007)

    Google Scholar 

  • A. Mussot, et al., Opt. Express 15, 11553 (2007)

  • S. Martin-Lopez, L. Abrardi, P. Corredera, H. Gonzalez, A. Mussot, Opt. Exp. 16, 6745 (2008)

    Google Scholar 

  • B. Cumberland, J.C. Travers, S.V. Popov, J.R. Taylor, Opt. Exp. 16, 5954 (2008)

    Google Scholar 

  • N. Akhmediev, M. Karlsson, Phys. Rev. A 51, 2602 (1995)

    Google Scholar 

  • D.V. Skryabin, et al., Science 301, 1705 (2003)

  • W.J. Wadsworth, et al., Opt. Exp. 12, 299 (2004)

  • G. Gallavotti (ed.), The Fermi-Pasta-Ulam Problem: A Status Report, Lecture Note in Physics 728 (Springer, Berlin, Heidelberg, 2008)

  • Ya. Zel’dovich, et al., Sov. Phys. JETP 35, 733 (1972) ; V.E. Zakharov, S.L. Musher, A.M. Rubenchik, Sov. Phys. JETP 42, 80 (1976) ; C. Montes, Astrophys. J. 216, 329 (1977) ; S.L. Musher, A.M. Rubenchik, V.E. Zakharov, Phys. Reports 252, 177 (1995)

  • N.S. Goel, et al., Rev. Mod. Phys. 43, 231 (1971)

  • C. Montes, Phys. Rev. A 20, 1081 (1979) ; C. Montes, J. Peyraud, M. Hénon, Phys. Fluids 22, 176 (1979)

    Google Scholar 

  • A.V. Gorbach, D.V. Skryabin, Opt. Lett. 31, 3309 (2006)

    Google Scholar 

  • R. Lacaze, P. Lallemand, Y. Pomeau, S. Rica, Physica D 152, 779 (2001)

    Google Scholar 

  • R.Y. Chiao, J. Boyce, Phys. Rev. A 60, 4114 (1999)

    Google Scholar 

  • R.Y. Chiao, T.H. Hansson, J.M. Leinaas, S. Viefers, Phys. Rev. A 69, 063816 (2004)

    Google Scholar 

  • T. Frisch, Y. Pomeau, S. Rica, Phys. Rev. Lett. 69, 1644 (1992)

    Google Scholar 

  • N.G. Berloff, B.V. Svistunov, Phys. Rev. A 66, 013603 (2002)

    Google Scholar 

  • S. Nazarenko, M. Onorato, Physica D 219, 1 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Picozzi, A., Barviau, B., Kibler, B. et al. Thermalization of incoherent nonlinear waves. Eur. Phys. J. Spec. Top. 173, 313–340 (2009). https://doi.org/10.1140/epjst/e2009-01083-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2009-01083-9

Keywords

Navigation