Skip to main content
Log in

Dynamics of dewetting at the nanoscale

A molecular dynamics study

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We use large-scale molecular dynamics simulations to model the dewetting of solid surfaces by partially wetting thin liquid films. As observed experimentally and in previous simulations, the films recede at an initially constant speed, creating a growing rim of liquid with a constant receding dynamic contact angle. Film recession is faster on the more poorly wetted surface to an extent that cannot be explained solely by the increase in the surface tension driving force. Furthermore, the rates of recession of the thinnest films are found to increase with decreasing film thickness. These results suggest not only that the mobility of the liquid molecules adjacent to the solid increases with decreasing solid-liquid interactions, but also that the mobility adjacent to the free surface of the film is higher than in the bulk, so that the average viscosity of the film decreases with thickness. Recent simulations of films with a wide range of solid-liquid interactions lend support to this view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • F. Brochard-Wyart, P.G. de Gennes, Adv. Coll. Interf. Sci. 39, 1 (1992)

    Google Scholar 

  • M.J. De Ruijter, T.D. Blake, J. De Coninck, Langmuir 15, 7836 (1999)

    Google Scholar 

  • C. Redon, F. Brochard-Wyart, F. Rondelez, Phys. Rev. Lett. 66, 715 (1991)

    Google Scholar 

  • F. Brochard-Wyart, J.M. de Meglio, D. Quéré, C. R. Acad. Sci. (Paris) 304, 553 (1987)

    Google Scholar 

  • F. Brochard-Wyart, J. Daillant, Can. J. Phys. 68, 1084 (1989)

    Google Scholar 

  • F. Brochard-Wyart, G. Debregeas, R. Fondecave, P. Martin, Macromolecules 30, 1211 (1997)

    Google Scholar 

  • C.-C. Hwang, J.-Y. Hsieh, K.-H. Chang, J.-J. Liao, Physica A 256, 333 (1998)

    Google Scholar 

  • H. Liu, A. Bhattacharya, A. Chakrabarti, J. Chem. Phys. 109, 8607 (1998)

    Google Scholar 

  • J. Koplik, J.R. Banavar, Phys. Rev. Lett. 84, 4401 (2000)

    Google Scholar 

  • E. Bertrand, T.D. Blake, V. Ledauphin, G. Ogonowski, J. De Coninck, D. Fornasiero, J. Ralston, Langmuir 23, 3774 (2007)

    Google Scholar 

  • P.G. de Gennes, Rev. Mod. Phys. 57, 827 (1985)

    Google Scholar 

  • R. Seeman, S. Herminghaus, C. Neto, S. Schlagowski, D. Podzimek, R. Konrad, H. Mantz,K. Jacobs, J. Phys. Cond. Matter 17, S267 (2005)

  • F. Brochard-Wyart, P.G. de Gennes, H. Hervert, C. Redon, Langmuir 10, 1566 (1994)

  • G. Reiter, Science 282, 888 (1998)

  • G. Reiter, Phys. Rev. Lett. 87, 186101 (2001)

    Google Scholar 

  • P. Damman, N. Baudelet, G. Reiter, Phys. Rev. Lett. 91, 216101 (2003)

    Google Scholar 

  • T.D. Blake, K.J. Ruschak, Nature 282, 489 (1979)

    Google Scholar 

  • D.M. Tolstoi, Dokl. Akad. Nauk SSSR 85, 1089 (1953)

    Google Scholar 

  • T.D. Blake, Coll. Surf. 47, 135 (1990)

    Google Scholar 

  • T.D. Blake, J. De Coninck, Adv. Coll. Interf. Sci. 96, 21 (2002)

    Google Scholar 

  • J.-L. Barrat, L. Bocquet, Phys. Rev. Lett. 82, 4671 (1999)

    Google Scholar 

  • M. Cieplak, J. Koplik, J.R. Banavar, Phys. Rev. Lett. 86, 803 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Bertrand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertrand, E., Blake, T. & De Coninck, J. Dynamics of dewetting at the nanoscale. Eur. Phys. J. Spec. Top. 166, 173–176 (2009). https://doi.org/10.1140/epjst/e2009-00901-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2009-00901-4

Keywords

Navigation